LED Applications Growing, Will Only Lead to More REE Demand
An end product’s supply chain can be far reaching, with parts or all of the upstream and downstream producers sometimes getting hit at different times by economic forces.
This appears to be happening in China’s domestic LED market, which has seen a marked fall-off in demand, according to the China Strategic Monitor. That’s hit pricing during the second half of this year.
“Investment plans are being curtailed both in the upstream and downstream compared to those presented last year,” according to the report. “Despite this there are many companies still attracted to the market and many pharmaceutical companies and even wineries in South China are moving into LED lighting products. Based on this trend the industry is likely to realize large-scale production capacity over the next 2 or 3 years and pricing for products should fall a further 20-30%.”
Industry watchers reckon 10% of LED-driven businesses in China could go bankrupt this year. And one chief executive, speaking at the recent China Industrial Development Forum for the Low Carbon Economy, said 90% of all China’s LED businesses are running at a loss.
Interesting. The country’s Guangdong province said earlier this month that it had exported US$3.81 billion worth of lighting products between January and August – that’s a 21% increase over the same time period last year.
“Customs authorities indicated that the main export market is still Europe and America with the two taking up 63.2% of the total,” a report said. “Though exports to Hong Kong, Japan and other ASEAN countries are up 60% on last year.”
The massive rise in LED exports is ascribed to the increasing trend of upgrading to energy-efficient lighting combined with the higher production values and quality in China, according to the report.
Still, various companies producing LED products complain that the industry is hit with high selling, raw material and R&D costs. So, while a company reports a 32% jump in LED sales in the third quarter of 2011when compared to 2Q10, the senior executives also talk about the need to implement structural changes, improve execution, reduce overhead costs and initiate job cuts.
Now, the LED industry uses a wide range of phosphor materials to convert light emission from LED chips into a different wavelength. So, combining a blue LED with one or more phosphors can create a white LED. Many of the phosphors used in LEDs contain rare-earth elements, the most common one being the yttrium aluminum garnet, which is doped with cerium. Another phosphor, called TAG, contains terbium, while silicate and nitride phosphors are commonly doped with cerium or europium.
Here’s a small example of how LED products are being used: Kingsun Optoelectronic Co has just installed more than 10,000 street lights containing one million high-efficiency white LEDs along 75 miles of roads in Shenzhen. Kingsun anticipates a 60-percent reduction in energy consumption compared to the high-pressure sodium fixtures that have been replaced in the upgrade.
And while LEDs are now widely recognized as emerging light sources for general illumination, it turns out that LED lighting can also be used in a broad range of life-science applications such as skin-related therapies, blood irradiation, pain management, hypertension reduction and photodynamic therapy, which, when combined with drugs, is finding its way into cancer research.
In other words, the LED industry is only now just starting to be exploited, meaning demand will grow across all sectors. Translation – more rare earths will be needed in producing these products as research advances are made and commercial producers become more lean and efficient.
Source: http://www.raremetalblog.com/
By: Brian Truscott
China’s Rare Earths Monopoly - Peril or Opportunity?
September 30, 2011 (Source: Market Oracle) — The prosperity of China’s “authoritarian capitalism” is increasingly rewriting the ground-rules worldwide on the capitalist principles that have dominated the West’s economy for nearly two centuries.
Nowhere is this shadow war more between the two systems more pronounced than in the global arena of production of rare earths elements (REEs), where China currently holds a de facto monopoly, raising concerns from Washington through London to Tokyo about what China might do with its hand across the throat of high-end western technology.
In the capitalist West, as so convincingly dissected by Karl Marx, such a commanding position is a supreme and unique opportunity to squeeze the markets to maximize profits.
Except China apparently has a different agenda, poking yet another hole in Marx’s ironclad dictums about capitalism and monopolies, further refined by Lenin’s screeds after his Bolsheviks inadvertently acceded to power in 1917 in the debacle of Russia’s disastrous involvement in World War One. Far from squeezing its degenerate capitalist customers for maximum profit (and it’s relevant here to call Lenin’s dictum that if you want to hang a capitalist, he’ll sell you the rope to do it), Beijing has apparently adopted a “soft landing” approach on rare earths production, gradually constricting supplies whilst inveigling Western (and particularly Japanese) high tech companies to relocate production lines to China to ensure continued access to the essential commodities.
REEs are found in everyday products, from laptops to iPods to flat screen televisions and hybrid cars, which use more than 20 pounds of REEs per car. Other RRE uses include phosphors in television displays, PDAs, lasers, green engine technology, fiber optics, magnets, catalytic converters, fluorescent lamps, rechargeable batteries, magnetic refrigeration, wind turbines, and, of most interest to the Pentagon, strategic military weaponry, including cruise missiles.
Technology transfer is the essential overlooked component in China’s economic rise, and Beijing played Western greed on the subject like a Stradivarius, promising future access to China’s massive market in return, an opium dream that rarely occurred for most companies. You want unimpeded access to Chinese RREs? Fine – relocate a portion on your production lines here, or…
Which brings us back to today’s topic.
Rare earths and investment – where to go?
China is riding a profitable wave, which depending on what figures you read, produces 95-97 percent of current global supply, and unprocessed raw earth earths ores are currently going for more than $100,000 a ton, or $50 a pound, which some of the exotica fetching far more (niobium prices has increase an astounding 1,000 percent over the last year). Rare earth elements like dysprosium, terbium and europium come mainly from southern China.
According to a United States Energy Department report, dysprosium, crucial for clean energy products rose to $132 a pound in 2010 from $6.50 a pound in 2003.
The soaring prices however have also invigorated many countries and producers to begin looking in their own back yards, for both new deposits and former mining sites that were shuttered when production cost made them uneconomic before prices went through the ceiling.
However, a number of unknown factors play into developing alternative sources to current Chinese RRE production. These include first prospecting possible sites, secondly, their purity and third, initial production costs, where modest Chinese labor costs are a clear factor.
The 17 RRE elements on the Periodic Table are actually not rare, with the two least abundant of the group 200 times more abundant than gold. They are, however, hard to find in large enough concentrations to support costs of extraction, and are frequently found in conjunction with radioactive thorium, leading to significant waste problems.
At hearings last week before U.S. House of Representatives Committee on Foreign Affairs Subcommittee on Asia and the Pacific, Molycorp, Inc. President and Chief Executive Officer Mark A. Smith stated that his company was positioned to fulfill American rare earth needs, currently estimated at 15,000-18,000 tons per year, by the end of 2012 if it can ramp up production at its Mountain Pass, California facility.
Which brings us back to foreign producers. A year ago Molycorp announced that it was reopening its former RRE mine in Mountain Pass, Calif., which years ago used to be the world’s main mine for rare earth elements, filing with the SEC for an initial public offering to help raise the nearly $500 million needed to reopen and expand the mine. Low prices caused by Chinese competition caused the Mountain Pass mine to be shuttered in 2002.
Mountain Pass was discovered in 1949 by uranium prospectors who noticed radioactivity and its output dominated rare earth element production through the 1980s; Mountain Pass Europium made the world’s first color televisions possible.
Molycorp plans to increase its capacity to mine and refine neodymium for rare earth magnets, which are extremely lightweight and are used in many high-tech applications and intends to resume production of lower-value rare earth elements like cerium, used in industrial processes like polishing glass and water filtration.
In one of those historic economic ironies, China was able to increase its RRE production in the 1980s by initially hiring American advisers who formerly worked at Mountain Pass.
The record-high REE prices are also underwriting exploration activities worldwide by more than six dozen other companies in the United States, Canada, South Africa, Malaysia and Central Asia to open new RRE mines, but with each start-up typically raising $10 million to $30 million, not all will succeed. That said, the future is bright, as almost two-thirds of the world’s supply of REEs exists outside of China and accordingly, China’s current monopoly of REE production will not last.
So where do investors look to cash in on the RRE boom?
First, do your homework.
Exhibit A is Moylcorp, which would seem to be in unassailable position as regards U.S. production, but which nevertheless on 20 September after JPMorgan Chase & Co. lowered its rating of the company, citing declines in rare-earth prices, causing its stock to plummet 22 percent in New York Stock Exchange composite trading, despite being the best-performing U.S. IPO in 2010 after beginning trading in July, more than tripling after rare-earth prices soared as China cut export quotas.
Is there money to be made in RREs?
Undoubtedly – but the homework for the canny investor needs to extend beyond spreadsheets to geopolitics, mining lore, chemistry and Wall Street puffery. That said, it seems likely that whatever U.S.-based company can cover the Pentagon’s RRE requirements is likely to see more than a minor boost in its bottom line.
Gentlemen, place your bets – but do your homework first.
Higher Prices for Numerous Rare Earth-Based Consumer Products
Consumers can expect significantly higher prices for a variety of consumer goods that use rare earth metals as at least one raw material, according to Michael Silver, president and chairman of the board of American Elements, a global manufacturer of engineered and advanced materials including rare earth metals and chemicals.
“The U.S. consumer has no idea the number of simple everyday products that will be impacted by the huge jump over the last year in rare earth prices,” says Silver. “Over the past two decades rare earths have become essential to the state of the art version of hundreds of household goods.”
According to Silver, computers, cell phones and other electronics will see manufacturing costs rise as neodymium is in computer hard drives, cerium is in the monitor screens and other rare earths play a part in the electronics. Products that rely on small electric motors often contain Neodymium magnets which have increased many fold in price.
Possibly the biggest impact will be felt in the cost of the family car.
“Rare Earths are ubiquitous in automobiles, he says. “Cerium is in the window glass to prevent yellowing and used as a glass polish in production. Yttrium is in spark plugs. Neodymium is in the electric motors that run everything from seat adjustments to windshield wipers. Lanthanum is in the batteries for electric and hybrid vehicles.”
He predicts higher prices will ripple through not just cars but all forms of transportation. The applications effecting automobiles will equally raise costs for other forms of transportation such as flight and rail.
Silver cites light bulbs as an example that consumers do not realize are affected by rare earth prices as Cerium is in bulb glass and Europium acts as the phosphor in fluorescent lights.
He predicts dental care costs will rise. Silver reports amalgam used to fill cavities is now based on a rare earth compound to get the new all white fillings to show up on an X-Ray the way the old metal fillings did.
Neodymium is used in modern welding goggles to remove glare. “Neodymium is a very magical material with many unrelated capabilities. When dispersed in glass, it prevents the wave length associated with yellow-green light from passing through, which is the wave length that causes eye damage,” Silver says.
Silver says the consumer will ultimately feel the pinch in cable television costs as well. Fiber optic cables run on EDFA technology which stands for ‘Erbium-Doped Fiber Amplification’, a technology reliant on the availability of Erbium which has skyrocketed in price. Existing infrastructures will not be impacted. New and replacement lines will.
American consumers may even be impacted at tax time. Silver says, “Our entire military equipment budget will increase due to higher rare earth costs and that will translate into higher government demand for revenue.” Rare earths are essential in the production of bullet proof vests (yttrium), night vision goggles (gadolinium) and F-35 and F-22 Fighter Jets, Bradley Armored Vehicle and AIM-9x Sidewinder missiles (neodymium).
American Elements is the world’s manufacturer of engineered & advanced materials with corporate offices and primary research & laboratory facilities in the United States and manufacturing & warehousing in the United States, China, Mexico and the United Kingdom.
September 27, 2011
(Source: PRNewswire)
By Rob Wynne
Rare earth elements vital to electronics industry
What do ics, lasers, optical fibres, capacitors, displays and headphones have in common? Answer: they are all electronic products that depend on one or more of the rare earth elements. And that list is far from complete.
There are 17 rare earth elements, all vital to the electronics industry in some form. Yet, despite their name, some rare earth element
s are relatively plentiful: cerium is, apparently, as abundant as copper. They are regarded as ‘rare’ because deposits of these elements are generally not exploitable commercially.
Though typically used in relatively small quantities per product, a major worry has emerged recently about the guaranteed continuation of their supply – some 97% of rare earths are currently supplied by China.
Over the last few years, China has been reducing its exports of rare earths and recently cut back more drastically, by around 70%
. And an ominous note was sounded when China completely halted supplies to Japan after a row about Japan’s arrest of a Chinese boat captain. He was released and supplies resumed. Squabbles aside, the prediction is that, within a few years, China will need its entire output of rare earths to satisfy its own domestic demand.
So action is being taken to avoid the drastic scenario of the supply of rare earths simply coming to a halt (see below). If it did, it is astonishing how many electronic products we use every day would become either much more difficult – even impossible – to make or much more expensive.
Take one of the most widely used rare earths – neodymium. It was first used to generate the light in green laser pointers, but then it was found that, when mixed with iron and boron, neodymium makes magnets that are weight for weight 12 times stronger than conventional iron magnets. Result: neodymium magnets are used in in-ear headphones, microphones, loudspeakers and hard disk drives, as well as electric motors for hybrid cars and generators.
Where low mass is important, they are vital: for example, in laptops, they provide finer control in the motors that spin the hard disk and the arm that writes and reads data to and from it, allowing much more information to be stored in the same area.
In its Critical Materials Strategy, the US Department of Energy (DoE) estimates new uses of neodymium, in products like wind tu
rbines and electric cars, could make up 40% of demand in an already overstretched market, which is why any shortages would be critical.
Most of the rare earths vital to electronics are less well known: erbium is one example, a crucial ingredient in optical fibres. For long distance optical fibre transmission, amplification is vital and is achieved with the help of erbium. Embedded within short sections of the optical fibre, excitable ions of erbium are pushed into a high energy state by irradiating them with a laser. Light signals travelling down the fibre stimulate the erbium ions to release their stored energy as more light of precisely the correct wavelength, amplifying the signals.
Tellurium is an element that could see a huge increase in demand because in 2009, solar cells made from thin films of cadmium telluride became the first to outdo silicon panels in terms of the cost of generating a Watt of electricity. Until now, there has been little interest in tellurium, but if it leads to significantly cheaper solar power, demand will rocket and that is why the DoE anticipates potential shortages by 2025.
Hafnium is another rare earth proving itself vital to the semiconductor industry; hafnium oxide is a highly effective electrical ins
ulator. It outperforms the standard transistor material, silicon dioxide, in reducing leakage current, while switching 20% faster. It has been a major factor in enabling the industry to move to ever smaller process nodes.
Also central to semiconductors is tantalum, key to billions of capacitors used worldwide in products like smartphones and tablet computers. In its pure form, this metal forms one of two conducting plates on which charge is stored. As an oxide, it is an excellent insulator, preventing current leakage between the plates, and is also self healing, reforming to plug any current leakage.
One of the most widely used rare earths is indium, which we all spend a lot of time looking at. The alloy indium tin oxide (ITO) provides the rare combination of both electrical conductivity and optical transparency, which makes it perfect for flat screen displays and tvs,
where it forms the see through front electrode controlling each pixel. A layer of ITO on a smartphone’s screen gives it the touch sensitive conductivity to which we have been accustomed in the last few years. Mixed with other metals, indium becomes a light collector and can be used to create new kinds of solar cells, together with copper and selenium.
Another rare earth valuable for its magnetic properties is dysprosium. When mixed with terbium and iron, it creates the alloy Terfenol D, which changes shape in response to a magnetic field; a property known as magnetostriction. Dysprosium can also handle heat
; while magnets made from a pure neodymium-iron-boron alloy lose magnetisation at more than 300°C, adding a small amount of dysprosium solves the problem. This make the element invaluable in magnets used in devices such as turbines and hard disk drives.
Other rare earths include: technetium, used in medical imaging; lanthanum and, the main components of a ‘mischmetal’ (an alloy of rare earth elements) used to create the negative electrode in nickel metal hydride batteries – and cerium also helps to polish disk drives and monitor screens; yttrium, important in microwave communication, and yttrium iron garnets act as resonators in frequency meters; and europium and terbium.
The last have been used for decades to produce images in colour tvs, thanks to their phosphorescent properties – terbium for yellow-green and europium for blue and red. More recently, energy saving compact fluorescent light bulbs have used them to generate the same warm light as the incandescent tungsten bulbs they replaced.
Is there a single reason why the rare earths have proved so valuable for such a range of technologies? The answer is no – it is more a result of each element’s particular physical characteristics, notably the electron configuration of the atoms, according to one of the world’s leading experts, Karl Gschneidner, a senior metallurgist at the DoE’s Ames Laboratory.
“Some of the properties are quite similar; basically, their chemical properties. That is why they are difficult to separate from each other in their ores and that is why they are mixed together in the ores. But many of the physical properties vary quite a bit from one another, especially those which depend upon the 4f electron (a particular electron shell in the configuration of the atom), that is the magnetic, optical and electronic properties. Even some of the physical properties, which are not directly connected to the 4f electrons, vary considerably. For example the melting points vary from 798°C for cerium to 1663°C for lutetium.”
What makes the rare earths so special is the way they can react with other elements to get results that neither could achieve alone, especially in the areas of magnets and phosphors, as Robert Jaffe, a Professor of Physics at MIT, explains.
“The result is high field strength, high coercivity, light weight magnets, clearly valuable in tiny devices where magnetically stored information has to be moved around, like hard disk read/write operations. The magnetic properties of pure metals and relatively simple alloys have been thoroughly explored and there is nothing as good as rare earth magnets. Two paradigms for magnetic material are NeBFe (neodymium-boron-iron) and SmCo (samarium-cobalt), with the former most popular now.
“In phosphors, europium, terbium and others absorb high frequency light and then re emit the light in regions of the spectrum that are very useful in manipulation of colour, hence their use in flat panel displays and compact fluorescent lights.”
Another example is neodymium oxide, which can be added to crt glass to enhance picture brightness by absorbing yellow light waves. Neodymium has a strong absorption band centred at 580nm, which helps clarify the eye’s discrimination between reds and greens.
Given how vital they are for the electronics industry and other technologies – by one estimate, £3trillion worth of industries depend on them – it is remarkable that the world has been so complacent about sourcing rare earths, allowing a single country to virtually monopolise the supply. But that is now changing.
For example, the Mountain Pass mine in California is being reactivated by Molycorp Minerals in a $781million project, having been mothballed in 2002. Others include the Nolans and Mount Weld Projects in Australia, a site at Hoidas Lake in Canada, Lai Chau in Vietnam and others in Russia and Malaysia.
In Elk Creek, Nebraska, Canadian company Quantum Rare Earth Development is drilling to look for supplies and has called on President Obama to move aggressively to create a stockpile of rare earths.
Another associated problem is the lack of people with rare earth expertise, as Gschneidner says.
“There is a serious lack of technically trained personnel to bring the entire rare earth industry – from mining to OEMs – up to full speed in the next few years. Before the disruption of the US rare earth industry, about 25,000 people were employed in all aspects. Today, there are only about 1500.”
Despite these moves, it could be years before they enhance supplies significantly. For the longer term, there are prospects of better sources emerging. Just a couple of months ago, Japanese scientists from the University of Tokyo announced they had found the minerals in the floor of the Pacific Ocean in such high density that a single square kilometre of ocean floor could provide 20% of current annual world consumption. Two regions near Hawaii and Tahiti might contain as much as 100billion tonnes.
The team was led to the sea floor because they reasoned that many rock samples on land containing metallic elements were originally laid down as ocean sediments. “It seems natural to find rare earth element rich mud on the sea floor,” they said.
A final extraordinary fact about rare earths is that, despite their importance, we have hardly bothered to recycle them at all. In an age when metals like aluminium, copper, lead and tin have recycling rates of between 25% and 75%, it is estimated that only 1% of rare earths are recycled. Japan alone is estimated to have 300,000 tons of rare earths in unused electronic goods. If we do not correct that quickly, over the next few years at least, rare earths could live up to their name with a vengeance.
Author
David Boothroyd
Source: http://www.newelectronics.co.uk
Thirteen Exotic Elements We can’t Live Without
From indium touchscreens to hafnium-equipped moonships, the nether regions of the periodic table underpin modern technology, but supplies are getting scarce
AS YOU flick the light switch in your study, an eerie europium glow illuminates your tablet computer, idling on the desk. You unlock it, casually sweeping your finger across its indium-laced touchscreen. Within seconds, pulses of information are pinging along the erbium-paved highways of the internet. Some music to accompany your surfing? No sooner thought than the Beach Boys are wafting through the neodymium magnets of your state-of-the-art headphones.
For many of us, such a scene is mundane reality. We rarely stop to think of the advances in materials that underlie our material advances. Yet almost all our personal gadgets and technological innovations have something in common: they rely on some extremely unfamiliar materials from the nether reaches of the periodic table. Even if you have never heard of the likes of hafnium, erbium or tantalum, chances are there is some not too far from where you are sitting.
You could soon be hearing much more about them, too. Demand for many of these unsung elements is soaring, so much so that it could soon outstrip supply. That’s partly down to our insatiable hunger for the latest gadgetry, but increasingly it is also being driven by the green-energy revolution. For every headphone or computer hard-drive that depends on the magnetic properties of neodymium or dysprosium, a wind turbine or motor for an electric car demands even more of the stuff. Similarly, the properties that make indium indispensable for every touchscreen make it a leading light in the next generation of solar cells.
All that means we are heading for a crunch. In its Critical Materials Strategy, published in December last year, the US Department of Energy (DoE) assessed 14 elements of specific importance to clean-energy technologies. It identified six at “critical” risk of supply disruption within the next five years: indium, and five “rare earth” elements, europium, neodymium, terbium, yttrium and dysprosium. It rates a further three - cerium, lanthanum and tellurium - as “near-critical”.
What’s the fuss?
It’s not that these elements aren’t there: by and large they make up a few parts per billion of Earth’s crust. “We just don’t know where they are,” says Murray Hitzman, an economic geologist at the Colorado School of Mines in Golden. Traditionally, these elements just haven’t been worth that much to us. Such supplies are often isolated as by-products during the mining of materials already used in vast quantities, such as aluminium, zinc and copper. Copper mining, for example, has given us more than enough tellurium, a key component of next-generation solar cells, to cover our present needs - and made it artificially cheap.
“People who are dealing with these new technologies look at the price of tellurium, say, and think, well, this isn’t so expensive so what’s the fuss?” says Robert Jaffe, a physicist at the Massachusetts Institute of Technology. He chaired a joint committee of the American Physical Society and the Materials Research Society on “Energy Critical Elements” that reported in February this year. The problem, as the report makes clear, is that the economics changes radically when demand for these materials outstrips what we can supply just by the by. “Then suddenly you have to think about mining these elements directly, as primary ores,” says Jaffe. That raises the cost dramatically - presuming we even know where to dig.
An element’s price isn’t the only problem. The rare earth group of elements, to which many of the most technologically critical belong, are generally found together in ores that also contain small amounts of radioactive elements such as thorium and uranium. In 1998, chemical processing of these ores was suspended at the only US mine for rare earth elements in Mountain Pass, California, due to environmental concerns associated with these radioactive contaminants. The mine is expected to reopen with improved safeguards later this year, but until then the world is dependent on China for nearly all its rare-earth supplies. Since 2005, China has been placing increasingly stringent limits on exports, citing demand from its own burgeoning manufacturing industries.
That means politicians hoping to wean the west off its ruinous oil dependence are in for a nasty surprise: new and greener technologies are hardly a recipe for self-sufficiency. “There is no country that has sufficient resources of all these minerals to close off trade with the rest of the world,” says Jaffe.
So what can we do? Finding more readily available materials that perform the same technological tricks is unlikely, says Karl Gschneidner, a metallurgist at the DoE’s Ames Laboratory in Iowa. Europium has been used to generate red light in televisions for almost 50 years, he says, while neodymium magnets have been around for 25. “People have been looking ever since day one to replace these things, and nobody’s done it yet.”
Others take heart from the success story of rhenium. This is probably the rarest naturally occurring element, with a concentration of just 0.7 parts per billion in Earth’s crust. Ten years ago, it was the critical ingredient in heat-resistant superalloys for gas-turbine engines in aircraft and industrial power generation. In 2006, the principal manufacturer General Electric spotted a crunch was looming and instigated both a recycling scheme to reclaim the element from old turbines, and a research programme that developed rhenium-reduced and rhenium-free superalloys.
No longer throwing these materials away is one obvious way of propping up supplies. “Tellurium ought to be regarded as more precious than gold - it is; it is rarer,” says Jaffe. Yet in many cases less than 1 per cent of these technologically critical materials ends up being recycled, according to the United Nations Environment Programme’s latest report on metal recycling, published in May.
Even if we were to dramatically improve this record, some basic geological research to find new sources of these elements is crucial - and needed fast. Technological concerns and necessary environmental and social safeguards mean it can take 15 years from the initial discovery of an ore deposit in the developed world to its commercial exploitation, says Hitzman.
Rhenium again shows how quickly the outlook can change. In 2009, miners at a copper mine in Cloncurry, Queensland, Australia, discovered a huge, high-grade rhenium seam geologically unlike anything seen before. “It could saturate the world rhenium market for a number of years - and it was found by accident,” says Hitzman.
In the end, we should thank China for its decision to restrict exports of rare earths, says Jaffe, as it has brought the issue of technologically critical elements to our attention a decade earlier than would otherwise have happened. Even so, weaning ourselves off these exotic substances will be an immense challenge - as our brief survey of some of these unsung yet indispensable elements shows.
Bibliography
US Department of Energy, Critical Materials Strategy
American Physical Society and Materials Research Society, Energy Critical Elements
US Geological Survey, Mineral Commodity Summaries
by James Mitchell Crow
Precious Metals: Is Tellurium the new Gold?
Gold has been spectacularly popular among investors for the past couple of years.
Silver seems to be this year’s gold.
So, what’s next year’s silver gonna be?
According to Robert Jaffe, a physicist at MIT, tellurium could be a metal investor’s best new play.
“Tellurium ought to be regarded as more precious than gold — it is; it is rarer,” he tells New Scientist magazine.
An article by James Mitchell Crow in the June, 2011 issue of New Scientist, titled “13 Exotic Elements We Can’t Live Without,” points out:
We rarely stop to think of the advances in materials that underlie our material advances. Yet almost all our personal gadgets and technological innovations have something in common: they rely on some extremely unfamiliar materials from the nether reaches of the periodic table. Even if you have never heard of the likes of hafnium, erbium or tantalum, chances are there is some not too far from where you are sitting.
You could soon be hearing much more about them, too. Demand for many of these unsung elements is soaring, so much so that it could soon outstrip supply. That’s partly down to our insatiable hunger for the latest gadgetry, but increasingly it is also being driven by the green-energy revolution. For every headphone or computer hard-drive that depends on the magnetic properties of neodymium or dysprosium, a wind turbine or motor for an electric car demands even more of the stuff. Similarly, the properties that make indium indispensable for every touchscreen make it a leading light in the next generation of solar cells.
All that means we are heading for a crunch. In its Critical Materials Strategy, published in December last year, the US Department of Energy (DoE) assessed 14 elements of specific importance to clean-energy technologies. It identified six at “critical” risk of supply disruption within the next five years: indium, and five “rare earth” elements, europium, neodymium, terbium, yttrium and dysprosium. It rates a further three - cerium, lanthanum and tellurium - as “near-critical”.
Here are the 13 elements necessary for cleantech applications that may be winners in this year’s commodities portfolio:
Neodymium
New Scientist says:
These numerous uses make for a perfect storm threatening future supplies. In its Critical Materials Strategy, which assesses elements crucial for future green-energy technologies, the US Department of Energy estimates that wind turbines and electric cars could make up 40 per cent of neodymium demand in an already overstretched market. Together with increasing demand for the element in personal electronic devices, that makes for a clear “critical” rating.
Erbium
New Scientist says:
Erbium is a crucial ingredient in the optical fibres used to transport light-encoded information around the world. These cables are remarkably good at keeping light bouncing along, easily outperforming a copper cable transporting an electrical signal. Even so, the light signal slowly fades as it racks up the kilometres, making amplification necessary.
Tellurium
New Scientist says:
In 2009, solar cells made from thin films of cadmium telluride became the first to undercut bulky silicon panels in cost per watt of electricity generating capacity.
Because the global market for the element has been minute compared with that for copper - some $100 million against over $100 billion - there has been little incentive to extract it. That will change as demand grows, but better extraction methods are expected to only double the supply, which will be nowhere near enough to cover the predicted demand if the new-style solar cells take off. The US DoE anticipates a supply shortfall by 2025.
Hafnium
Hafnium’s peerless heat resistance has taken it to the moon and back as part of the alloy used in the nozzle of rocket thrusters fitted to the Apollo lunar module. Since 2007, though, it has also been found much closer to home, in the minuscule transistors of powerful computer chips.
That’s because hafnium oxide is a highly effective electrical insulator. Compared with silicon dioxide, which is conventionally used to switch transistors on and off, it is much less likely to let unwanted currents seep through. It also switches 20 per cent faster, allowing more information to pass. This has enabled transistor size to shrink from 65 nanometres with silicon dioxide first to 45 nm and now to 32 nm.
By Justin Rohrlich June 20, 2011