Cobalt

Could the renewables industry suffer from a lack of scarce metals?

It is not just in laptop computers, mobile telephones and LED screens that scarce metals are to be found but also in solar cells, batteries for mobile technologies and many other similar applications. And the rising demand for these metals increases the risk of a bottleneck in supplies…

“There is no future without scarce metals!” This was the very clear message with which Peter Hofer, a member of Empa’s Board of Directors, greeted guests at the recent Technology Briefing on scarce metals held at the Empa Academy.

After all, it is scarce metals in batteries and motors that keep electric vehicles rolling and which, in automobile catalytic converters, clean up the exhaust gases.

Hofer said: “Materials with special properties are essential if we are to find solutions to the problems caused by our ever-increasing mobility requirements.”

The term scarce metals includes gallium, indium, cobalt and the platinum metals, in addition to the rare earth metals which are used (together with iron and boron), for example, to make the very strong magnets needed in wind turbines.

And manufacturers like to use tantalum for the capacitors on mobile telephone printed circuit boards (PCBs) because this transition metal, when used in these tiny components, enables them to store and release large amounts of electrical energy. The demand is high, with more than 60% of the tantalum mined being used for this application.

The darker side

But, as Patrick Wäger, the initiator of the Technology Briefing and an expert on scarce metals, explained, everything has a darker side to it. Raw materials which can only be mined and refined in a few countries, for which alternatives are not easy to find and which have a low rate of recycling must are considered to be critical. China, for example, almost completely controls the supply of rare earth metals from which high-performance permanent magnets are manufactured.

Wäger, who is a staff member of Empa’s Technology and Society laboratory, added that by imposing export restrictions the Chinese Government has forced prices to rise, leading to delivery bottlenecks. Currently great efforts are being made to reduce this dependency by expanding supply capacities outside of China, such as in the USA, Australia or Greenland – with implications also for the environment.

Tantalum, required for high-performance micro-capacitors, is viewed in the microelectronics industry as a material which is difficult to substitute, and to date it has not been possible to recover it from end-of-life products. Particularly worrying are the facts that tantalum is illegally mined in certain Central African countries under degrading conditions, and the profits from its sale are used to finance civil wars.

“Swiss companies also need to think closely about how they can reduce this dependency and avoid the possibility of delivery bottlenecks,” remarked Jean-Philippe Kohl, the Head of Swissmem’s Economic Policy Group.

A recent survey of the industry association’s members in the Swiss mechanical engineering, electrical and metal sectors showed that every single company contacted used at least one of the critical raw materials. In order to protect themselves from possible shortages many of the companies had signed long-term delivery contracts with their suppliers. The others are cooperating with research institutions, either to develop alternative raw materials and technologies, or to optimise existing processes.

Alternatives from research labs

As an example of this approach, Stephan Buecheler explained how Empa’s Thin-Films and Photovoltaic laboratory was working to reduce the thickness of the critical tellurium layer in flexible solar cells which use cadmium telluride (CdTe) as the active material.

Similarly, efforts are being made in solar cells based on copper-indium-gallium-diselenide (CIGS) to replace the critical indium oxide with zinc oxide. In making these changes no loss of performance is expected. Quite the opposite, in fact – the aim is to increase the efficiency of these devices by optimal use of raw materials and fast processes. Researchers have already shown that this is possible, having set a new efficiency record last year.

Again with the aim of reducing scarce metal usage, the institution’s Internal Combustion Engine laboratory has developed an extremely efficient and economic foam catalyst. Changing the form of the ceramic substrate has enabled the use of less of the noble metals palladium and rhodium in comparison to conventional catalysts.

In collaboration with Empa’s Solid-State Chemistry and Catalysis laboratory, the motor scientists are conducting research work on regenerative exhaust gas catalysts which employed perovskites instead of scarce metals. The former are multifunctional metal oxides which, because of their special crystal structure, are capable of transforming heat directly into electrical energy.

The recycling challenge

Despite all the doom and gloom, we will not have to do without scarce metals entirely. As Heinz Boeni, head of the Technology and Society laboratory, maintained there is of course a reserve of scarce metals to be found in end-of-life electrical and electronic products.

While natural primary deposits are being used up, the ‘anthropogenic’ secondary deposits created by man are increasing continuously. In a ton of natural ore as mined there is typically about 5 g of gold. In a ton of discarded mobile telephones, on the other hand, there is about 280 g, while the same weight of scrap PCBs contains as much as 1.4 kg of the precious metal! But recovering scarce metals is anything but easy.

“You can’t just pull them out from electronic waste with a screwdriver and a hammer. The recovery process is at least as complex as the design and development of the old appliances themselves,” recycling expert Christian Hagelüken made clear.

A large percentage of scarce metals are to be found in the form of very thin layers or mixed with other substances in the form of alloys, added Hagelüken, whose employer, Umicore, is one of the largest recycling companies involved in the recovery of precious metals from complex waste material. Recycling scarce metals demands the use of complicated recovery processes.

Furthermore, suitable recovery processes alone are not enough to guarantee high recycling rates. According to the experts it is necessary to keep an eye on the whole recycling chain, from collection, disassembly and sorting of the scrap to the actual recovery process itself.

The greatest efforts are in vain if, as is the case in certain countries, end-of-life computers and other electronic appliances are exported to developing and threshold countries where the scarce metals are lost through the inappropriate treatment of the electronic waste, which also represents a danger to human health and the environment. Or, if with a mechanical disassembly - which is common today in Switzerland – the scarce metals are dissipated into fractions from which they cannot be recovered.

Source: http://www.renewableenergyfocus.com/view/23613/could-the-renewables-industry-suffer-from-a-lack-of-scarce-metals/

No future without scarce metals

(Nanowerk News) It is not just in laptop computers, mobile telephones and LED screens that scarce metals are to be found but also in solar cells, batteries for mobile technologies and many other similar applications. The rising demand for these metals increases the risk of a bottleneck in supplies.

Empa researchers and representatives from industry explained at the “Technology Briefing” why scarce metals are essential for many key technologies and how an impending scarcity might be avoided.

“There is no future without scarce metals!” This was the very clear message with which Peter Hofer, a member of Empa’s Board of Directors, greeted guests at the recent Technology Briefing on scarce metals held at the Empa Academy. After all, it is scarce metals in batteries and motors that keep electric vehicles rolling and which, in automobile catalytic converters, clean up the exhaust gases. Hofer again: “Materials with special properties are essential if we are to find solutions to the problems caused by our ever-increasing mobility requirements.”

The term scarce metals includes gallium, indium, cobalt and the platinum metals, in addition to the rare earth metals which are used (together with iron and boron), for example, to make the very strong magnets needed in wind turbines. And manufacturers like to use tantalum for the capacitors on mobile telephone printed circuit boards (PCBs) because this transition metal, when used in these tiny components, enables them to store and release large amounts of electrical energy. The demand is high, with more than 60 per cent of the tantalum mined being used for this application.

The darker side

But, as Patrick Wäger, the initiator of this Technology Briefing and an expert on scarce metals, explained, everything has a darker side to it. Raw materials which can only be mined and refined in a few countries, for which alternatives are not easy to find and which have a low rate of recycling must are considered to be critical. China, for example, almost completely controls the supply of rare earth metals from which high-performance permanent magnets are manufactured. Wäger, who is a staff member of Empa’s Technology and Society laboratory, added that by imposing export restrictions the Chinese government has forced prices to rise, leading to delivery bottlenecks. Currently great efforts are being made to reduce this dependency by expanding supply capacities outside of China, such as in the USA, Australia or Greenland – with implications also for the environment.

Tantalum, required for high-performance micro-capacitors, is viewed in the microelectronics industry as a material which is difficult to substitute, and to date it has not been possible to recover it from end-of-life products. Particularly worrying are the facts that tantalum is illegally mined in certain Central African countries under degrading conditions, and the profits from its sale are used to finance civil wars.

“Swiss companies also need to think closely about how they can reduce this dependency and avoid the possibility of delivery bottlenecks, ” remarked Jean-Philippe Kohl, the head of Swissmem’s Economic Policy Group. A recent survey of the industry association’s members in the Swiss mechanical engineering, electrical and metal sectors showed that every single company contacted used at least one of the critical raw materials. In order to protect themselves from possible shortages many of the companies had signed long-term delivery contracts with their suppliers. The others are cooperating with research institutions, either to develop alternative raw materials and technologies, or to optimize existing processes.

Alternatives from research labs

As an example of this approach, Stephan Buecheler explained how Empa’s Thin-Films and Photovoltaic laboratory was working to reduce the thickness of the critical tellurium layer in flexible solar cells which use cadmium telluride (CdTe) as the active material. Similarly, efforts are being made in solar cells based on copper-indium-gallium-diselenide (CIGS) to replace the critical indium oxide with zinc oxide. In making these changes no loss of performance is expected. Quite the opposite, in fact – the aim is to increase the efficiency of these devices by optimal use of raw materials and fast processes. Researchers have already shown that this is possible, having set a new efficiency record last year.

Again with the aim of reducing scarce metal usage, the institution’s Internal Combustion Engine laboratory has developed an extremely efficient and economic foam catalyst. Changing the form of the ceramic substrate has enabled the use of less of the noble metals palladium and rhodium in comparison to conventional catalysts. In collaboration with Empa’s Solid-State Chemistry and Catalysis laboratory, the motor scientists are conducting research work on regenerative exhaust gas catalysts which employed perovskites instead of scarce metals. The former are multifunctional metal oxides which, because of their special crystal structure, are capable of transforming heat directly into electrical energy.

The “recycling” challenge

Despite all the doom and gloom, we will not have to do without scarce metals entirely. As Heinz Boeni, head of the Technology and Society laboratory, maintained there is of course a reserve of scarce metals to be found in end-of-life electrical and electronic products. While natural primary deposits are being used up, the “anthropogenic” secondary deposits created by man are increasing continuously. In a ton of natural ore as mined there is typically about 5 g of gold. In a ton of discarded mobile telephones, on the other hand, there is about 280 g, while the same weight of scrap PCBs contains as much as 1.4 kg of the precious metal!

But recovering scarce metals is anything but easy. “You can’t just pull them out from electronic waste with a screwdriver and a hammer. The recovery process is at least as complex as the design and development of the old appliances themselves”, recycling expert Christian Hagelüken made clear. A large percentage of scarce metals are to be found in the form of very thin layers or mixed with other substances in the form of alloys, added Hagelüken, whose employer, Umicore, is one of the largest recycling companies involved in the recovery of precious metals from complex waste material. Recycling scarce metals demands the use of complicated recovery processes.

Furthermore, suitable recovery processes alone are not enough to guarantee high recycling rates. According to the experts it is necessary to keep an eye on the whole recycling chain, from collection, disassembly and sorting of the scrap to the actual recovery process itself. The greatest efforts are in vain if, as is the case in certain countries, end-of-life computers and other electronic appliances are exported to developing and threshold countries where the scarce metals are lost through the inappropriate treatment of the electronic waste, which also represents a danger to human health and the environment. Or, if with a mechanical disassembly - which is common today in Switzerland – the scarce metals are dissipated into fractions from which they cannot be recovered.

Source: http://www.nanowerk.com/news/newsid=24127.php

Cobalt, tantalum and rare earths among main topics at indaba’s commodities review

The increased global interest in minor metals will shape the Commodities Review and Outlook ferroalloys and minor metals’ presentation at the 2012 Investing in African Mining Indaba, says commodity research and consultancy company Core Consultants.

Feature speaker, Core Consultants MD Lara Smith, tells Mining Weekly the company will particularly highlight minor metals cobalt and tantalum, as well as rare earths, as these metals are increasingly used in everyday technology and are experiencing an increase in demand.

“Cobalt, for instance, is used in lithium batteries and, with the manufacturing of electronic devices booming, we are seeing greater demand for cobalt as most electronic devices, such as mobile phones, tablets and laptops, rely on this type of battery for power,” she explains.

Further, she notes that 50% of global cobalt reserves are along the Copperbelt in the Democratic Republic of Congo (DRC) and Zambia, with only 5% of copper refined in the DRC and the rest refined in China.

However, Smith highlights that, although cobalt represents an opportunity for Central Africa through global demand, supply will be a challenge.

“Mining licences have been granted in the DRC but logistics are still a major concern,” she says.

Nevertheless, Smith predicts the price of cobalt will increase if supply is disrupted.

Meanwhile, tantalum, which is used in the production of capacitors for automotive and electronic equipment, is also experiencing increased demand.

“Supply of tantalum was traditionally supplemented by secondary sources, including DLA inventory sales and recycling. However, in 2007, the DLA ceased selling tantalum.

“Recycling has become increasingly costly as, in many instances, the recovery costs outweigh the extraction of tantalum owing to the miniaturisation of electronic devices.”

Also experiencing high demand are rare earths, the bulk of which are concentrated and produced in China.

Smith says substantial funds have been raised by Japan and invested in the research and development of rare earths recycling methods, as more countries attempt to diversify away from reliance on Chinese rare- earth material.

She notes that the introduction of new rare earths producers in other countries will be costly, compared with China, where the orebodies are more favourable and amenable to extraction and capital, and labour and environment costs are lower.

Smith will also provide Core Consultants’ price projections for these metals to attendees of this year’s Mining Indaba.

By: Reggie Sikhakhane
Source: http://www.miningweekly.com/article/cobalt-tantalum-and-rare-earths-among-main-topics-at-indabas-commodities-review-2012-01-27

Chromium, are Nations Hoarding Natural Resources?

Chromium is a topic that you rarely hear about, but in today´s environment of uncertainty and the, ¨Great Worldwide Resource Grab¨, chromium gets more attention. Recently we have the EU and USA going into Libya (oil, lithium), Iraq (oil), Afghanistan (oil pipeline, rare earths), West Africa (cobalt, tungsten, oil, gold, timber and many more). Let us not forget China and the contracts that they are signing all over the world for their natural resource needs. This all makes for some very interesting times for nations and investors alike. Rare industrial metals are no different. Chromium has been in the news so it is time to explain its uses and background.

Chromium was discovered by Louis Vauqelin in 1797. Chromium is a blue-white metal with great corrosion resistance. It has the symbol Cr with an atomic number of 24. Chromium can be polished to form a very shiny surface and is used to plate other metals to form a protective layer.

The main use of chromium is in the production of steel where it is used as a hardener, corrosion resister and helps fight decolorization. Iron and chromium form Stainless Steel which is strong and has a high resistance to heat and decomposition. The two form one of the most versatile and durable metals known in the world. Stainless steel contains approximately 10% chromium. Chromium is also used in paints, coloring in glass, and as a plating agent.

According to the USGS the top producers are South Africa, Kazakhstan and India. South Africa produces almost 50% of all chrome ore. The three countries account for 80% of all chrome ore mined. Approximately 95% of all known reserves are located in Kazakhstan and the southern tip of Africa to include Zimbabwe and South Africa.

The background of chromium is interesting, but today we have a hot topic. India is thinking about a ban on exportation of chrome ore. This is after news out of South Africa that the, ¨National Union of Mineworkers¨, called for restrictions of chrome ore exports to China. It has been speculated that China has been stockpiling chrome ore in order to control future prices. Does this sound familiar? We currently have to deal with the manipulation of the rare earths and rare industrial metals by China. As of October 2011 India and South Africa have not followed through with the plans. The next few weeks and months will be quite interesting, we are seeing an increase in the need for chromium, with a possible decrease in available supply.

Today our world is full of uncertainty. Every day brings us news of something amazing. Governments are under pressure, people are suffering, companies are folding, wonderful inventions, worldwide internet connectivity, and resources are becoming scarce. I have learned that in times like this you can either complain or build a grand future. Many fortunes were made during the US Great Depression. We are living through a worldwide recession, when we come out on the other side natural resources will be needed like never before. Where are you putting your money and future?

By: Randy Hilarski - The Rare Metals Guy

Cobalt a Critical Rare Industrial Metal Vital to U.S. Energy Policy

Cobalt was discovered around 1736 by Georg Brandt a Swedish chemist. The element was found to give glass a hint of blue. For centuries cobalt has been used as a pigment in glass and porcelain. Chinese artisans used it to color their vases and other ceramics. Over the last few decades cobalt has had a grand resurgence. In the late 1970′s Zaire, now Democratic Republic of Congo had a bloody civil war which cut off the world from much of the production of cobalt. During this time alternatives had to be found because the price of the rare industrial metal accelerated beyond what industry was willing to pay. Since then the amount of uses for Cobalt have expanded to the point where the US Department of Energy added cobalt to its, “Critical Materials”, list.

This metal has found its way into many of our technological applications used today. Cobalt’s uses include aerospace, green tech, pigments, dyes, batteries, wireless technology, computers, magnets, desulfurization of crude oil, orthopedic implants and high-strength superalloys. The use of cobalt in superalloys is mainly due to its corrosion resistance, temperature stability, and wear resistance. These attributes make it highly suitable to aircraft engines and gas turbines. The US Department of Energy predicts that electric powered vehicles (PHEVs and EVs) will need an estimated 9.4 kg each of cobalt. By 2012 the estimated sales of hybrid and electric vehicles worldwide is approximately 2.2 Million, and by 2015 to be at least 10% of the world auto market. Wind energy also uses large amounts of cobalt within its turbine blades and samarium-cobalt magnets.

The US Department of Energy has made it clear that any rare industrial metal used in clean energy technology such as electric vehicles, solar cells, wind turbines and energy efficient lighting will be deemed critical. The problem for the USA lies in its supply of cobalt. Still today over 40% of global production is from The Democratic Republic of Congo. China has an agreement with the DRC to export all of the cobalt to China where it is refined. Once again China has a stranglehold on rare industrial metals similar to what is happening in the rare earth market. The big difference is with rare industrial metals it is much more difficult to expand supply. There are very few known deposits of cobalt, most production is a by-product of copper production. The USA has been recycling 15% of its cobalt and importing 85% from foreign sources. The bad news for the USA is that China needs cobalt as well. Currently the USA has only one mine that is being prepped for production in Idaho. This mine will primarily produce cobalt totaling 3% of the global supply. The main players in cobalt refining are China, Finland and Canada. According to the USGS in 2010 the total world production of cobalt was around 88,000t.

If a person is looking for a way to profit from cobalt there are a few options. A person could buy stocks of mining companies that have rights to cobalt mines, which is the traditional method. Recently the London Metals Exchange (LME) launched a cobalt contract traded in 1 metric ton lots of 99.3% pure cobalt. The other option is buying cobalt in Germany and having it stored 100% allocated in Switzerland. A company that offers the option of buying cobalt in smaller quantities is Swiss Metal Assets. Although cobalt is only one of the various rare industrial metals they offer.

By: Randy Hilarski - The Rare Metals Guy
Source: http://www.buyrareearthmetalschinaprices.com

Why Buy and Store Metals Offshore

Storage Facility in Zurcher Freilager AG free zone in Switzerland

One of the most common questions I hear in the metals business is, “€œwhere do I store my metals?”. This question is often posed by a person, foundation or trust that is looking to secure their investments. Usually we hear about buyers of gold, silver, platinum and palladium who want to protect their assets but now there is a growing number of clients who are looking to diversify beyond the core metals we all know so well. How do we best protect our assets today with all the uncertainty? Here I will discuss why a portion of your metals should be stored offshore, and in what form works best.

What kinds of Metals can an Entity Store Offshore?
The metals people most often store outside of the country are gold and silver although experienced metals buyers might also buy platinum and palladium. Recently clients have been able to buy other rare industrial metals like tellurium, cobalt, molybdenum, hafnium, indium and tantalum. A few years ago the average investor would not have had the ability to buy some of these metals unless they owned a company that produced items which needed these rare industrial metals.

Why is it Wise to Store Offshore?
In the 1930′s during the Great Depression the US government confiscated all privately held gold. US citizens were not able to possess their own gold again until the 1970′s. Will we have a similar situation this time around with the world in its current state of transition? How is the US government planning on fixing this situation? Many countries are choosing inflation, currency devaluation, low interest rates and austerity measures. When these techniques fail to rein in the problems will governments turn to gold and their populations’ assets? One thing I know is that indium, cobalt, tantalum, tungsten and many of the other rare industrial metals and rare earth metals are on the critical metals list of the USA, EU, Japan, Korea and China. The question is whether rare earth metals and rare industrial metals will ever be deemed so crucial to economic and industrial applications that a country may decide to control the purchase of these metals. We see what China is doing with these metals and one must ask ones’€™ self, “€œCould these control measures spread to my country?”€.

The old saying, “€œdon’€™t put all your eggs in one basket”€, applies here. Clients commonly say, “€œI want to be able to touch my metals”€. This is great, and encouraged but the stress of knowing so much of your assets are under one roof can be too much to handle for the average person. The metals can possibly become a liability and risk to you and your family’€™s safety.

Why would I not take delivery of Rare Industrial Metals and Rare Earths?
Some clients may wish to take delivery of their metals. This can be done just like gold and silver but the big difference is that these metals are used in industry. When the client takes the metals to the broker they will ask for the metals to be assayed. This is the process of taking a sample and sending it to a lab to verify purity. Also when dealing with rare industrial metals the amounts can be quite large and take up a good deal of space. Some elements like hafnium are controlled because of its use in nuclear technologies and it cannot be transported internationally. The metals trader stores the metals for the client and upon request resells the metals.

How do I Store the Metals Offshore?
When researching where to store your metals make sure to do thorough due diligence. There are many options for the investor. The most common choice is a safety deposit box in a bank. Safety deposit boxes are the most widely recognized. They are great for small allocations of metals. Storing in your second home offshore is also a common choice. This is also good for the client who has a small allocation of metals. Offshore bank vaults are also an option but can be rather expensive. The best option for clients with medium to large amounts of metals is an offshore private vault or depository. The prices are reasonable and they offer unparalleled privacy. A good example would be the Zurcher Freilager AG free zone in Switzerland.

What about Taxes?
This is a complicated issue that needs to be addressed by a tax professional. Every country has its own tax rules which are far beyond my expertise. As far as the Zurcher Freilager AG is concerned, as long as the assets are sold within the free zone it is a tax free event.

What are you doing about securing your future? Every day we hear more and more about an unstable financial market, geo political uncertainty, governments overreaching and bad economies. Wouldn’t it be prudent to have your assets spread out across the world?

What is holding you back?

By: Randy Hilarski - The Rare Metals Guy
Source: http://www.buyrareearthmetalschinaprices.com

Alternative Metals to Gold and Silver

Rare Industrial Metal - Cobalt

The last decade has been a wonderful time for Gold Bugs and Silver Bugs. We have profited and protected our wealth against inflation. Gold has risen from around $250 per ounce in 2001 to a recent high of $1917.90 and silver has risen from around $5 per ounce in 2001 to a recent high of $49.81. These numbers are quite exciting for anyone involved in the precious metals markets. Being a Silver Bug myself, I have to admit the ride up has been rather erratic. Long ago I had to learn to ignore the daily Comex price of Silver. Gold and Silver will continue to be an important part of my future holdings, but going forward I am beginning diversification into other metals. Here is a brief overview of some of the rare industrial metals I like and why I believe they are a good choice for anyone who believes in holding physical metals as part of their asset strategy.

There are many who believe the world is in a recession and this may be true in the USA, EU, and other Western nations. There are a few of us who still believe that the speed of industry and commerce is accelerating. I have spent time in Africa, had an opportunity to live in Europe for a few years and I currently live in Panama. This experience has opened my eyes to what is happening outside of the USA. What I see is a great mass of people who were once walking now driving cars. These same people are talking on mobile phones, watching television on a flat screen, using their laptop at a cafe, getting better medical care, flying on vacations, living in modern homes and working jobs that require technology. This is happening across the planet! Can you imagine the impact on demand for rare industrial metals from countries of the BRIC, (Brazil, Russia, India, China), with the size of their populations? Like it or not commercialization was tested in the USA and was a huge success and now it has been exported worldwide. Here in Panama with a population of just over 3 Million we are adding 3000 automobiles a month to the roads. There are enough mobile phones in Panama to give every citizen 3 handsets. All of this takes a lot of natural resources and metals. Below are some of the important metals I would like to introduce to you.

Tantalum, the rare technical and industrial metal that gives technology the ability to be compact. Have you ever wondered why we no longer have to carry around mobile phones the size of a brick? The tantalum capacitor was a revolutionary invention for the world. Today you find tantalum in all of your personal electronics. Tantalum is now being used in in medical implants because it is non-toxic and does not react with body fluids. It is also used in jet aircraft as an alloying agent. Current worldwide production of tantalum is approximately 1160t annually. By 2030 just the demand is estimated to be 1410t. A few years back there was a lot of controversy surrounding tantalum because of its “Conflict Metal” tag. The metal was originally being mined in the Congo but most tantalum is mined in Australia, Brazil, and Canada.

Indium, how do you like that touch screen on your mobile phone? This rare technical and industrial metal has become a star among the elements recently. Indium’s uses in phones, computers, semi-conductors and televisions are well known. The one use that I would really like to highlight is in CIGS (copper-indium-gallium-selenide) thin film solar cells. These solar panels are the latest technology to hit the solar industry. Recently we have heard India, Japan, USA, Germany, Spain and many other countries announce huge solar initiatives. India alone signed into law a US $19 billion plan to produce 20 GW of solar power by 2020. Under the plan, the use of solar-powered equipment and applications would be made compulsory on all government buildings, as well as hospitals and hotels. This initiative alone will use up all the entire world’s production of solar cells. According to the USGS 84% of all indium production is currently used in solar cell production. Current worldwide production of Indium is approximately 600t per year. The future amount of indium required will depend greatly on the solar industry. Indium is mined in China, Canada, Bolivia and Japan.

Cobalt, have you driven a hybrid or electric vehicle lately? This rare technical and industrial metal is the one of the elements that makes the batteries in these cars possible. Cobalt is also used in pigments, super-alloys, non-corrosive medical implants, dental implants and jet engines. The top use today is as an alloy to make metals resistant to corrosion. The one I see real promise in is the use of hybrid and electric vehicle batteries. By 2012 the estimated sales of hybrid vehicles worldwide is approximately 2.2 Million and by 2015 to be at least 10% of the world auto market. Currently the biggest hurdle to these vehicles is the added cost and the ability to produce enough batteries to meet the demand. Cobalt has gained a lot of attention since the London Metal Exchange (LME) launched a cobalt contract in February 2010. Current worldwide production of cobalt is approximately 57,500t annually. The future is bright for cobalt. Every aircraft that goes in the air and every hybrid vehicle sold will put greater pressure on the supply of this metal. Cobalt is mined in Australia, Congo, Russia, Zambia and a few other countries.

These are just a few of the metals that our world needs to operate and the future is looking great for all commodities. I like the rare technical and industrial metals because of the tight supply and all of the wonderful uses for them. The mining of these metals is often a by-product of base metal like copper, lead and zinc. Most of the large deposits have been found and are in production. This translates into a very tight supply for the future and profits for investors. Silver and Gold have been my metals of choice for many years, but I see great opportunity for the person who is adventurous and willing to add another asset to their portfolio before the masses catch on.

By: Randy Hilarski - The Rare Metals Guy
Source: http://www.buyrareearthmetalschinaprices.com

Nanoparticle Magnets Conserve Rare Earth Metals

Professor George Hadjipanayis. Source: University of Delaware.

Researchers at the University of Delaware and at General Electric Global Research are independently developing new magnets using nanoparticles to preserve the increasingly small supply of rare earth metals typically used in the strongest magnets made today. These new magnets are also stronger and lighter than traditional magnets and should increase efficiency as well as conserve the dwindling supply of neodymium, dysprosium, and terbium.

Demand for these metals is quickly outstripping their availability. This may be exacerbated by stricter export policies from China where most of the current supply is found. The Department of Energy has funded two independent projects looking to circumvent this scarcity by using nanoparticles to create magnets instead of large quantities of metals. Both projects are taking the same general approach to the problem - creating magnets from nanoparticles combining very small amounts of these rare metals with particles of iron and other more common metals. The small scale structure of these compounds greatly increases the magnetism found in the metal alone, requiring much less metal to achieve the same - or better - results found in normal magnets.

GE is being fairly tight lipped about the specific composites in its magnets and about their manufacturing process. They claim to have successfully produced thin films of magnets using their process and are working on making magnets large enough for practical use. The other research group - headed by the Chairman of the Physics Department George Hadjipanayis at the University of Delaware - is more open about its methods but is also having difficulty scaling their process up sufficiently for practical use.

The team at Delaware is using a combination of iron and cobalt with the standard rare metals in particles of around 20-30 nanometers to create its nanomagnetic material. They are trying to increase the magnetism of these particles and discover ways to assemble them into functional two and three dimensional arrays that act like traditional magnets. Their current research has general applications, but specific projects are focused on creating viable storage media and magnets for various types of medical research and technology.

TFOT has previously reported on other research into magnets and using magnets including superconductivity research at the Los Alamos National Laboratory Magnet Lab and magnetic spaceshields that could protect spaceships from high speed particles and solar flares. TFOT has also reported on other nanoparticle research including a nanoparticle vaccine for Type 1 diabetes, silver nanoparticles for creating small electronics, and a way to encapsulate cancer treatments in nanoparticles.

Read more about the University of Delaware research into magnetic nanoparticles on the group website. Read more about the initial DOE grant funding this research in this University of Delaware

July 26, 2011 - Janice Karin
www.thefutureofthings.com

Critical Minerals, Elements, Metals, Materials

In this article I am going to take a look at three reports covering what the US and Europe consider critical or strategic minerals and materials.

In its first Critical Materials Strategy, the U.S. Department of Energy (DOE) focused on materials used in four clean energy technologies:

  • wind turbines: permanent magnets
  • electric vehicles:€“ permanent magnets & advanced batteries
  • solar cells: thin film semi conductors
  • energy efficient lighting: phosphors

The DOE says they selected these particular components for two reasons:

  1. Deployment of the clean energy technologies that use them is projected to increase, perhaps significantly, in the short, medium and long term
  2. Each uses significant quantities of rare earth metals or other key materials

In its report the DOE provided data for nine rare earth elements: yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, terbium and dysprosium as well as indium, gallium, tellurium, cobalt and lithium.

Five of the rare earth metals, dysprosium, neodymium, terbium, europium and yttrium€“ as well as indium, were assessed as most critical in the short term. The DOE defines “€œcriticality”€ as a measure that combines importance to the clean energy economy and risk of supply disruption.

Securing Materials for Emerging Technologies

A Report by the APS Panel on Public Affairs and the Materials Research Society coined the term “€œenergy-critical element”€ (ECE) to describe a class of chemical elements that currently appear critical to one or more new, energy related technologies.

“Energy-related systems are typically materials intensive. As new technologies are widely deployed, significant quantities of the elements required to manufacture them will be needed. However, many of these unfamiliar elements are not presently mined, refined, or traded in large quantities, and, as a result, their availability might be constrained by many complex factors. A shortage of these energy-critical elements (ECEs) could significantly inhibit the adoption of otherwise game-changing energy technologies. This, in turn, would limit the competitiveness of U.S. industries and the domestic scientific enterprise and, eventually, diminish the quality of life in the United States.”

According to the APS and MRS report several factors can contribute to limiting the domestic availability of an ECE:

The element may not be abundant in the earth’€™s crust or might not be concentrated by geological processes

An element might only occur in a few economic deposits worldwide, production might be dominated by and, therefore, subject to manipulation by one or more countries – the United States already relies on other countries for more than 90% of most of the ECEs identified in the report

Many ECEs have, up to this point, been produced in relatively small quantities as by-products of primary metals mining and refining. Joint production complicates attempts to ramp up output by a large factor.

Because they are relatively scarce, extraction of ECEs often involves processing large amounts of material, sometimes in ways that do unacceptable environmental damage

The time required for production and utilization to adapt to fluctuations in price and availability of ECEs is long, making planning and investment difficult

This report was limited to elements that have the potential for major impact on energy systems and for which a significantly increased demand might strain supply, causing price increases or unavailability, thereby discouraging the use of some new technologies.

The focus of the report was on energy technologies with the potential for large-scale deployment so the elements they listed are energy critical:

  • Gallium, germanium, indium, selenium, silver, and tellurium employed in advanced photovoltaic solar cells, especially thin film photovoltaics.
  • Dysprosium, neodymium, praseodymium, samarium and cobalt€“ used in high-strength permanent magnets for many energy related applications, such as wind turbines and hybrid automobiles.
  • Gadolinium (most REEs made this list) for its unusual paramagnetic qualities and europium and terbium for their role in managing the color of fluorescent lighting. Yttrium, another REE, is an important ingredient in energy-efficient solid-state lighting.
  • Lithium and lanthanum, used in high performance batteries.
  • Helium, required in cryogenics, energy research, advanced nuclear reactor designs, and manufacturing in the energy sector.
  •  Platinum, palladium, and other PGEs, used as catalysts in fuel cells that may find wide applications in transportation. Cerium, a REE, is also used as an auto-emissions catalyst.
  • Rhenium, used in high performance alloys for advanced turbines.

 The third report I looked at, “Critical Raw Materials for the EU” listed 14 raw materials which are deemed critical to the European Union (EU): antimony, beryllium, cobalt, fluorspar, gallium, germanium, graphite, indium, magnesium, niobium, platinum group metals, rare earths, tantalum and tungsten.

€œRaw materials are an essential part of both high tech products and every-day consumer products, such as mobile phones, thin layer photovoltaics, Lithium-ion batteries, fibre optic cable, synthetic fuels, among others. But their availability is increasingly under pressure according to a report published today by an expert group chaired by the European Commission. In this first ever overview on the state of access to raw materials in the EU, the experts label a selection of 14 raw materials as “€œcritical”€ out of 41 minerals and metals analyzed. The growing demand for raw materials is driven by the growth of developing economies and new emerging technologies.

For the critical raw materials, their high supply risk is mainly due to the fact that a high share of the worldwide production mainly comes from a handful of countries, for example:

China: €“ Rare Earths Elements (REE)

Russia, South Africa:€“ Platinum Group Elements (PGE)

Democratic Republic of Congo:€“ Cobalt

All four of the following critical materials appear on each list:

  • Rare Earth Elements (REE)
  • Cobalt
  • Platinum Group Elements (PGE)
  • Lithium

The key issues in regards to critical metals are:

  • Finite resources
  • Chinese market dominance in many sectors
  • Long lead times for mine development
  • Resource nationalism/country risk
  • High project development cost
  • Relentless demand for high tech consumer products
  • Ongoing material use research
  • Low substitutability
  • Environmental crackdowns
  • Low recycling rates
  • Lack of intellectual knowledge and operational expertise in the west

 Certainly the rare earth elements, the platinum group of elements and lithium are going to continue receiving investor attention,€“ they are absolutely vital to the continuance of our modern lifestyle. But there are two metals increasingly on my radar screen, one is on all three above critical metals lists and the other soon will be when/if production increases, and in this authors opinion, that’€™s very possible.

Cobalt

A critical or strategic material is a commodity whose lack of availability during a national emergency would seriously affect the economic, industrial, and defensive capability of a country.

The French Bureau de Recherches Géologiques et Minires rates high tech metals as critical, or not, based on three criteria:

  • Possibility (or not) of substitution
  • Irreplaceable functionality
  • Potential supply risks

Many countries classify cobalt as a critical or a strategic metal.

 The US is the world’€™s largest consumer of cobalt and the US also considers cobalt a strategic metal. The US has no domestic production, the United States is 100% dependent on imports for its supply of primary cobalt,€“ currently about 15% of U.S. cobalt consumption is from recycled scrap, resulting in a net import reliance of 85%.

Although cobalt is one of the 30 most abundant elements within the earth’s crust it’s low concentration (.002%) means it’s usually produced as a by-product – cobalt is mainly obtained as a by-product of copper and nickel mining activities.

Scandium

Scandium is a soft, light metal that might have applications in the aerospace industry. With a cost approaching $300 per gram scandium is too expensive for widespread use. Scandium is a byproduct from the extraction of other elements, uranium mining, nickel and cobalt laterite mines and is sold as scandium oxide.

The absence of reliable, secure, stable and long term production has limited commercial applications of scandium in most countries. This is despite a comprehensive body of research and a large number of patents which identify significant benefits for the use of scandium over other elements.

Particularly promising are the properties of :

  • Stabilizing zirconia: Scandia stabilized zirconia has a growing market demand for use as a high efficiency electrolyte in solid oxide fuel cells
  • Scandium-aluminum alloys will be important in the manufacture of fuel cells
  • Strengthening aluminum alloys (0.5% scandium) that could replace entire fleets with much cheaper, lighter and stronger aircraft
  • Alloys of scandium and aluminum are used in some kinds of athletic equipment, such as aluminum baseball bats, bicycle frames and lacrosse sticks
  • Scandium iodide (ScI3) is added to mercury vapor lamps so that they will emit light that closely resembles sunlight

Conclusion

The REEs, PGEs, Lithium and Cobalt are all truly critical to the functioning of our modern society. It’€™s easy to see why they are classified as critical or strategic. Scandium will increasingly find its way into our everyday lives and undoubtedly take its place on the various critical metal lists.

Access to raw materials at competitive prices has become essential to the functioning of all industrialized economies. Cobalt is one of those raw materials, so too will be Scandium.

Are these two critical metals on your radar screen?

If not, maybe they should be.

Richard Mills - Ahead of the Herd | July 14, 2011