Critical Metals Vital to Our Lives in Tight Supply

We begin 2012 similar to how we started 2011 when it comes to rare earth, rare technical metals and rare industrial metals. China has over 90% of production and refining. The US and EU governments are scrambling to legislate, source, produce, open and reopen mines. The West has decided to continue down the road of the idea that the markets will take care of the supply and price of these metals. What is alarming is how easily the West was lulled to sleep by China´s ability to supply the world its metals cheaply and efficiently. The West concentrated on making money trading stocks and futures that dealt with these commodities. China concentrated on building the most extensive mining industry in the history of man. Here in 2012 the Department of Energy in the USA has approved a spending bill that includes $20 Million to focus on the supply issues of these metals.

The metals I am speaking about are so vital to our everyday lives. These metals are found in your mobile phones, computers, LCD and LED TV´s, hybrid cars, solar power, wind power, nuclear power, efficient lighting and medical technologies. Here is a list of metals that have been deemed critical.

  • Indium RIM (Solar, Mobile Phones, LCD)
  • Tellurium RIM (Solar, Computers, Semi-conductors)
  • Gallium RIM (Solar, Mobile Phones, LED´s, Fuel Cells)
  • Hafnium RIM (Processors, Nuclear, Lighting, Plasma Cutting Tools)
  • Tantalum RIM (Capacitors, Medical Implants, Mobile Phones, Nuclear)
  • Tungsten RIM (Nuclear, Armaments, Aviation)
  • Yttrium REE (Lighting, Medical Technology, Magnets in Hybrids)
  • Neodymium REE (Magnets in Wind power, Super Magnets, Hybrid Vehicles)
  • Dysprosium REE (Computers, Nuclear, Hybrid Vehicles)
  • Europium REE (Lighting, LED´s, Lasers
  • Lanthanum REE (Hybrid Vehicles, Magnets, Optics)
  • Cerium REE (LED´s, Catalytic Converters, Magnets)

RIM=Rare Industrial Metal REE=Rare Earth Element

The supplies of these metals could hold back the production of green technologies. According to the latest report by the Department of Energy, ¨Supply challenges for five rare earth metals may affect clean energy technology deployment in the years ahead¨. If Green technology is to become main stream, the costs of these technologies have to reach cost parity with traditional energy sources. As long as there are serious supply issues with these metals the costs can´t reach these levels. The other option is finding alternatives like Graphene and Nanotechnologies.

The US and EU need supply chains of the metals that include both mining and refining of these metals. Relying on sovereign states for critical metals such as these, leave a nation vulnerable to outside influence in both politics and economics. Environmentalists have succeeded in influencing politicians to close mines throughout the West. Politicians have legislated the mining industry into the position it is in today. The Western nations must start now to build its supply chain or continue to be at the mercy of the BRIC (Brazil, Russia, India and China) nations for its metal needs.

The best the West can do now is provide, enough metals to meet its own demands. China has reached a point where it can now demand that certain industries produce their products there. If a company decides to try to produce the product in another country China will make producing that item cost prohibitive outside of China by raising the prices of the metals.

The demand for the products these metals are used to produce, are showing few signs of slowing down even in a so-called recession. Governments are subsidizing Green technology, people are buying mobile phones across the planet and everybody wants a nice flat screen TV. Will 2012 pass without countries truly taking this opportunity to fix the problem or will they step up and make the hard decisions which can put the countries back in control over their own destiny?

By: Randy Hilarski - The Rare Metals Guy

Electric cars to be hit by supply disruptions

The advancement of electric cars in the short-term could be affected by supply disruptions.

That’s the verdict of a new report from the US Department of Energy entitled 2011 Critical Materials Strategy, which looks at supply challenges for five rare earth metals – dysprosium, neodymium, europium, terbium and yttrium. These metals are used in magnets for wind turbines and electric vehicles or phosphors in energy efficient lighting. Meanwhile, other elements, including indium, lanthanum, cerium and tellurium, were found to be near critical.

According to the report, demand for almost all of the materials has grown more rapidly than demand for commodity metals such as steel – this has come from consumer products including mobile phones, computers and flat panel televisions, as well as clean energy technologies.

However, the report concludes that manufacturers of wind power and electric vehicle technologies are already looking into strategies to respond to potential shortages. It states that manufacturers are currently making decisions on future system designs, trading off performance benefits of elements such as neodymium and dysprosium against potential supply shortages.

As an example, wind turbine manufacturers are looking at gear-driven, hybrid and direct drive systems with varying levels of rare earth metal content while some electric vehicle manufacturers are pursuing rare earth free induction motors or using switched reluctance motors as an alternative to PM motors.

By: Paul Lucas
Source: http://www.thegreencarwebsite.co.uk/blog/index.php/2011/12/27/electric-cars-to-be-hit-by-supply-disruptions/

2012 Outlook: Uncertainty Continues For Rare Earths Prices, China Still Major Player

(Kitco News) - After exploding onto the metals scene in 2010 and garnering widespread media and investor attention, rare earths element prices have dropped and have been unstable mainly due to demand tapering off in 2011, leading to uncertainty in 2012.

Low demand during 2011 was caused by high rare earths prices from both heavy and light rare earths metals, which despite their fluttering prices, remain historically high.

Despite unstable prices throughout 2011, there is some expectation that rare earths prices might become more stable in 2012.

“I think that rare earth metals, they tend to be more strategic in nature and supply versus demand remains quite balanced in favor of prices being stronger in 2012,” said Mike Frawley, global head of metals at Newedge Group. “The pace of consumption in mainland China is a critical component of demand, prices.”

The Chinese continue to control most of the rare earths supply but reports show that Chinese exports are extremely low. Information provided by Metal Pages, a news site that focuses on non-ferrous metals, ferro alloys and rare earths, indicated that rare earth elements exports have dropped 65% in 2011 and that China has only exported 11,000 metric tons of rare earths through the first three quarters of the year.

Reports suggested that the Chinese government may change regulations that would get around Chinese producers who have cut their supply while keeping prices high.

Rare earths prices alone are also an issue not only with volatility, but with their general cost.

According to a report focused on rare earth elements performance for the upcoming year from A.L. Waters Capital, the firm highlighted some specific rare earths and their current prices compared to their peak prices.

A heavy rare earth such as dysprosium, which is commonly used in televisions and lasers, reached a market high of $2,800 per kilogram while its current price is $2,000.

Another heavy rare earths type, europrium, which is used in television screens, peaked at $5,900/kg while its current price is $3,900.

Some light rare earths come at a substantially cheaper price, such as neodymium, which is used in magnets, peaked at $410/kg on the market and currently sits at $270. (A complete list of all 17 rare earth metals and their uses can be found at the end of the article.)

While rare earths are expensive to use in producing several products used daily, the drop in demand does not come from an alternate substance that can be as effective for a fraction of the cost.

“Demand has gone down (in 2011) but I also think that they haven’t really been able to replace rare earth metals,” said Arnett Waters, chairman of A.L. Waters Capital. “I think that part of what’s going on is that businesses are spending less money on more expensive stuff. If I have a use for europrium and I can use a quarter of a pound of it and it does ok in the product that I’m making, I’m not going to adopt a new product in this economy. It would cost too much money.”

Also, with current economic crises around the globe, it is expected that demand will not be strong in 2012 given the historical high prices of rare earths.

Waters used strategic military defense equipment as an example.

“In the case of strategic military equipment, defense budgets are declining,” Waters said. “I realize the U.S. may not be cutting stealth bomber production, but I am saying that in many countries that would like to use these rare earth metals for strategic purposes are cutting their defense budgets and they cannot afford it.”

Rare earths metals play a large role in current modern technology, cruise missiles and other weapons systems.


China holds most of the processing capacity for rare earths metals.

“A lot of the processing capacity is in China and you can’t use Chinese capacity unless you’re actually getting your rare earths from them,” said Waters. “That’s why Lynas Corporation Ltd. (ASX: LYC) and others have been building their plants in Malaysia.”

Lynas currently has a concentration plant under construction at Mount Weld in Western Australia as well as an advanced materials plant in Kuantan, Malaysia. Neither plant has begun production yet.

Molycorp Inc. (NYSE:MCP) has three facilities, two located in the U.S., California and Arizona respectively, as well as one located in Estonia. The company stated earlier in 2011 that production from the three facilities would produce between 4,941 and 5,881 metric tons by the end of 2011. The company expects to raise production to 19,050 metric tons by the end of 2012.

The sentiment to mine and produce rare earths outside of China does not fall squarely on the shoulders of these two companies but it is still believed that bigger companies will gain more control of mines and production compared to smaller mining companies.

“At the end of the day it just means that there’ll be fewer smaller mines and there’s a natural evolutionary process that takes place in all developing parts of the world,” said Frawley. “You’ll have the small miners who will be succeeded by stronger companies. A more efficient process will begin to emerge.”

“That takes a long time and I don’t see it changing the balance of that supply any time soon.”


The biggest obstacle rare earths metals face as an investment is that although classified under the umbrella of rare earths metals, there are 17 different types and they are separated into two categories.

“Rare earth prices are not listed like precious and base metals prices so it is difficult for the average person to invest in,” said Waters. “It’s a barrier to the growth of the industry.

“As the market is maturing, there is going to be a need for a centralized source of information.”

Although newer in the metals world than precious and base metals, information can always be found.

“They’re small markets in comparison to gold, copper and aluminum in terms of tonnage and consumption tonnages,” Frawley said. “In terms of price transparency of these markets you’ll have to dig a little deeper.”

-List of heavy and light rare earths metals and their uses-


Yttrium TV, glass and alloys

Promethium Nuclear batteries

Europium TV screens

Gadolinium Superconductors, magnets

Terbium Lasers, fuel cells and alloys

Dysprosium TVs, lasers

Holmium Lasers

Erbium Lasers, vanadium steel

Thulium X-ray source, ceramics

Yterrbium Infrared lasers, high reactive glass

Lutetium Catalyst, PET scanners


Samarium Magnets, lasers, lighting

Neodymium Magnets

Lanthanum Re-chargeable batteries

Cerium Batteries, catalysts, glass polishing

Praseodymium Magnets, glass colorant

Scandium Aluminum alloy: aerospace

By Alex Létourneau of Kitco News
Source: http://www.forbes.com/sites/kitconews/2011/12/30/2012-outlook-uncertainty-continues-for-rare-earths-prices-china-still-major-player/3/

DOE report finds 5 clean-energy related REEs at risk in short-term

The substantial capex required for the development of a rare earths mine, compounded by major miners’ lack of interest in mining rare earths, may spell trouble in meeting future demand.

A report issued Thursday by the U.S. Department of Energy has determined supplies of five rare earths metals-dysprosium, terbium, europium, neodymium and yttrium-are at risk in the short term, potentially impacting clean energy technology deployment in the years ahead.

The 2011 Critical Minerals Strategy examined 16 elements for criticality in wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting. Of those 16 elements, eight are rare earth metals valued for their unique magnetic, optical and catalytic properties.

Five rare earth elements used in magnets for wind turbines and electric vehicles or phosphors for energy-efficient lighting were found to be critical in the short term (present-2015).

Between the short term and the medium term (2015-2025), the importance to clean energy and supply risk shift for some materials.

Other elements-cerium, indium, lanthanum and tellurium-were found to be near-critical.

DOE’s strategy to address critical materials challenges rests on three pillars. To manage supply risk, multiple sources of materials are required. “This means taking steps to facilitate extraction, processing and manufacturing here in the United States, as well as encouraging other nations to expedite alternative supplies,” the report said. “In all cases, extraction, separation and processing should be done in an environmentally sound manner.

“Second, substitutes must be developed,” the report cautioned. “Research leading to material and technology substitutes will improve flexibility and help meet the materials needs of the clean energy economy.”

“Third, recycling, reuse and more efficient use could significantly lower world demand for newly extracted materials,” the DOE advised. “Research into recycling processes coupled with well-designed policies will help make recycling economically viable over time.”

The report also contains three in-depth technology analyses with the following conclusions:

· “Rare earth elements play an important role in petroleum refining, but the sector’s vulnerability to rare earth supply disruptions is limited.”

· “Manufacturers of wind power and electric vehicle technologies are pursuing strategies to respond to possible rare earth shortages. Permanent magnets containing neodymium and dysprosium are used in wind turbine generators and electric vehicle motors. Manufacturers of both technologies are current making decisions on future system design, trading off the performance benefits of neodymium and dysprosium against vulnerability to potential supply shortages.”

 · “As lighting energy efficiency standards are implemented globally, heavy rare earths used in lightning phosphors may be in short supply. In the United States, two sets of lighting energy efficiency standards coming into effect in 2012 will likely lead to an increase in demand for fluorescent lamps containing phosphors made with europium, terbium and yttrium.”

In their analysis, DOE found R&D plays a central role in developing substitutes for rare earth elements. In the past year, the agency has increased its investment in magnet, motor and generator substitutes.

“The demand for key materials has also been driven largely by government regulation and policy,” the report observed.

“Issues surrounding critical materials touch on the missions of many federal agencies,” said the DOE. Since March 2010, an interagency working group on critical materials and their supply chains convened by the White House Office of Science and Technology Policy has been examining market risks, critical materials in emerging high-growth industries and opportunities for long term-benefit through innovation.

The report also found that, in general, mining and metal processing expertise “has gradually declined in countries of the Organization for Economic Co-operation and Development, although the need to develop and retain such expertise has received increasing attention in recent years.”

While the number of REO-producing firms located outside of China is small, the proliferation of new rare earth companies “could help ease market concentrations in the years ahead,” the DOE observed. However, “one of the most significant requirements in the rare earth supply chain is the amount of capital needed to commence mining and refining operations…”

“The extraction and, in particular, the processing of rare earth ore is extremely capital intensive, ranging from $100 million to $1 billion of capital expenditure depending on the location and production capacity,” the report noted. “Bringing a greenfield mine to production likely costs in excess of $1 billion.”

“The estimated financial investment needed just to prove the resource (e.g., exploration and drilling) can be up to $50 million,” said the DOE. “The up-front cost of production capacity can range from $15,000 to $40,000 per tonne of annual capacity.’

“Unlike other commodities, rare earth mining generally does not appeal to the major global mining firms because it is a relatively small market (about $3 billion in 2010) and is often less predictable and less transparent than other commodity markets,” the report said.

“Additionally, the processing of rare earth elements into high-purity REOs is fundamentally a chemical process that is often highly specialized to meet the needs of particular customers,” the study noted. “It requires unique mineral processing know-how that is not transferrable to other mining operations. These factors reduce the appeal of rare earths production to the major mining companies, leaving the field mostly to junior miners.”

The report observed that smaller mining companies face a number of challenges, including being less well-capitalized than the majors and may find it difficult to raise money from traditional market. Certain macroeconomic conditions, particularly tight credit and volatile equity markets, can contribute to these difficulties.

“Successful public flotations require fairly advanced operations with proven resources, a bankable feasibility study and often customer contracts or off-take agreements in place that ensure some level of revenue,” the agency said. The DOE noted that Molycorp and Lynas Corporation have the largest capitalizations, “reflecting in part their expansion of large established mines.”

By: Dorothy Kosich
Source: http://www.mineweb.com/mineweb/view/mineweb/en/page72102?oid=142195&sn=Detail&pid=102055

Molycorp, Daido, Mitsubishi form next generation rare earth magnets JV

Molycorp has formed a joint venture with Daido Steel and Mitsubishi to manufacture next generation NdFeB permanent rare earth magnets.


Molycorp, Daido Steel, and Mitsubishi have formed a joint venture to manufacture and sell next-generation neodymium-iron-boron (NdFeB) permanent rare earth magnets, producing greater performance with less reliance on dysprosium.

The joint venture will be financed by the three companies and by a government subsidy sponsored by Japan’s Ministry of Economy, Trade, and Industry.

The effort will utilize Daido’s commercial-scale magnet manufacturing technologies, Mitsubishi’s domestic and international marketing and sales network, and Molycorp’s rare earth oxide, metal and alloy manufacturing capabilities, according to Molycorp.

Target markets for the joint venture are the automotive and home appliance markets. “The joint venture has been provisionally awarded a supply agreement for a next-generation electric vehicle with a major automotive manufacturer,” Molycorp advised.

Rare earth magnets currently fall into two basic types: samarium cobalt and neodymium-iron-boron, both of which can be bonded or sintered. Currently, between 45,000 and 50,000 tons of sintered neodymium magnets are produced each year, mainly in China and Japan.

“The technology for use by the joint venture is a new and novel approach that does not depend on the use of patents held by other magnet companies,” said Molycorp. Instead, it “allows for the manufacture of permanent rare earth magnets that deliver greater performance with less reliance on dysprosium, a relatively scare rare earth.”

“The process also results in higher production yields,” the company added.

The technology is licensed from Intermetallics, a partnership between Mitsubishi, Daido and Masato Sagawa, co-inventor of the NdFeB magnet. Made with neodymium, praseodymium and dysprosium (or terbium), NdFeB magnets are considered the world’s most powerful permanent magnet. They are a component of high-performance motors used in the power trains of electric vehicles, hybrid vehicles and wind power generators, as well as in motors in home appliance and industrial applications.

The International Energy Agency estimates electric motors are used in 45% of global power consumption. The NdFeB magnets in motors could help reduce that power consumption by 20% and potentially reduce global CO2 emissions by 1.2 billion tons.

“I am happy and very honored that Molycorp is able to partner with these extraordinary companies, who are global leaders and innovators in so many areas,” said Mark Smith, Molycorp CEO. “Molycorp is also pleased that the joint venture can break ground almost immediately and will be able to produce some of the world’s most powerful rare earth magnets in as little as 14 months.”

The JV plans to build an initial 500 metric-ton-per year magnet manufacturing facility in Nakatsugawa, Japan (Gifu Prefecture) with start-up expected by January 2013. The companies expect to commence work on the new facility next month and eventually expand operations in the U.S. and elsewhere.

“The next generation magnet manufacturing technologies being utilized by the joint venture are a perfect complement to the advanced technologies Molycorp is deploying across our own rare earth manufacturing supply chain,” Smith said, adding the initiative is a major milestone in Molycorp’s mine-to-magnets technology.

The capital contribution ratio of the joint venture will be 30% by Molycorp, 35.5% by Daido, and 34.5% by Mitsubishi.

By: Dorothy Kosich
Source: http://www.mineweb.com/mineweb/view/mineweb/en/page72102?oid=140588&sn=Detail&pid=72102

Lowman: Reliant on rare earth

Toyota Prius

Science … tells us that nothing in nature, not even the tiniest particle, can disappear without a trace. Nature does not know extinction. All it knows is transformation … and everything science has taught me … strengthens my belief in the continuity of our spiritual existence after death. Nothing disappears without a trace.

— Werner von Braun

What do Yttrium, Promethium, Europium and Luterium have in common? Although they may sound like a foreign language, these rare earth elements comprise the backbone of new technologies for the 21st century. Seventeen chemical elements, also called rare earths, are appended to the existing periodic table of elements, and their relatively new discoveries have advanced the electronics industry. Yttrium, when alloyed with other elements, forms part of aircraft engines; Promethium is an essential component of long-lived nuclear batteries; Europium powers images in flat-screen televisions; and Luterium detects radiation in PET scanners (positron emission tomography) used for medical research. Many new technologies — hybrid cars, televisions, cellphones, computer hard drives, camera lenses, and self-cleaning ovens — owe their success to rare earth elements.

The Prius alone contains rare earth elements for its LCD screens, electric motor and generator, headlight glass, catalytic converter, UV windows and mirrors; other cars require similar components to provide competitive features for buyers. The magnets under the hood of a Prius are some of the most powerful on the planet. Different from older technologies, they use rare earth elements to charge the battery and turn the wheels.

Without rare earth elements, your iPod earbuds would still be large, old-fashioned and unwieldy headphones.

As the world’s technologies become increasingly dependent on rare earth metals, their reserves become more valuable. Half the world’s rare earth deposits are in China, which mines almost 100 percent of global supply. Because China recognizes its own increasing needs for new technologies, the country recently reduced rare earth element export quotas by almost 40 percent in 2010.

So what will other countries do to remain competitive in the high-technology market? The answer: Train the emerging generation in STEM education — science, technology, engineering and math — to develop new technologies.

In North Carolina, hubs like Research Triangle Park and Raleigh’s new Nature Research Center are ideal incubators for the next generation of scientists and engineers. Researchers are working around the clock to design products that do not require rare earth elements. At Ames Laboratory in Iowa, scientists are trying to create magnets devoid of any rare earth metals. General Electric is applying nanotechnology to wind turbines as part of its clean-energy portfolio. Nanocomposite magnets will reduce the need for two rare earth metals: neodymium and dysprosium, which function to line up the magnetic field in wind turbines or hybrid cars.

Another strategy for minimizing the reliance on China’s rare earth deposits is to locate reserves closer to home. On California’s Mojave Desert, several rare earth mining operations are reopening. Another option involves improved recycling of cellphones and other products that contain rare earth elements.

The most economical solution is to reduce our reliance on rare earth elements altogether. Toyota is scrambling to develop technologies that do not require magnets utilizing rare earth elements in hybrid cars, and the television industry hopes to someday eliminate the need for Europium and Terbium in its screen imagery.

Training the next generation of scientists and engineers to inspire creative solutions is critical; otherwise, iPods, PET scans and plasma televisions may become increasingly limited in their production. After all, where will America be without scandium, a rare earth element alloyed with aluminum in baseball bats?

By: Meg Lowman
Source: http://www.heraldtribune.com/article/20111114/columnist/111119877?tc=ar

Meg Lowman, longtime Florida scientist/educator, is establishing the Nature Research Center at the North Carolina Museum of Natural Sciences, with a mission to engage the public. Her column appears monthly on these pages.

PwC warns on rare earth metals shortage as China tightens supplies

PricewaterhouseCoopers (PwC) sounded an alarm on the impending supply shortage of rare earth metals, which could seriously hit the automotive, chemicals and renewable energy industries.

According to a survey of executives from 69 manufacturing companies released by PwC, 14 of the 17 rare earth metals that include cerium, dysprosium, fluorspar and beryllium are set to become even scarcer within the next five years.

Demand for rare earth metals is currently expected to outstrip supply by 30-50,000 tonnes in 2012.

This shortage is likely to result in a decline in production rate of devices and products such as mobile phones, TVs, military equipment and wind turbines that require rare earth metal made components.

The majority of the companies that participated in the survey are major global players with annual revenues of over US$10 billion, said PwC.

The survey has found that 71 per cent of executives from European consumers of rare earth metal see the shortage as a risk to their businesses.

PwC went as far as calling the situation a “ticking time bomb”.

“Put simply, many businesses now recognise that we are living beyond the planet’s means,” said global sustainability leader at PwC Malcolm Preston.

It was reported earlier this week that China, the world’s largest producer of rare earth metals that accounts for 94 percent of global output, exported 65 percent less metals in the first nine months of the year compared to the same period of 2010.

Total exports for the period reached 11,000 tonnes, just 40 percent of the export quota for 2011, while demand for the metals outside of China is estimated at around 40,000 tonnes.

China keeps reducing its export quotas to redirect supplies to the domestic markets, prompting users of rare earth metals to move their manufacturing operations to China.

The country’s largest rare earths producer Baotou Steel Rare-Earth Hi-Tech has recently decided to suspend production in order to push the prices higher after China decided to impose new environmental restrictions on the industry.

Broker Fairfax said yesterday there were reports of a “buyers-strike” in the market as consumers including automakers and oil refineries refused to buy metals from China and sought cheaper alternatives.

However, vice chairman of Baotou Li Zhong has said at a conference that the government restrictions make it unrealistic for the prices to drop.

The situation has already caused the US to urgently seek domestic supplies of rare earth metals.

“With the need for new business models, a key challenge for business is how to draw the line between collaboration and competitive advantage,” said Preston.

“This is where strategic decision making meets sustainability. Getting this right will define the winners and losers of the future.”

By: Sergei Balashov
Source: http://www.proactiveinvestors.co.uk/companies/news/36671/pwc-warns-on-rare-earth-metals-shortage-as-china-tightens-supplies-36671.html

New JRC report highlights risk of rare earth metal shortages

Rare Earth Elements

A new JRC report revealed that five metals, essential for manufacturing low-carbon technologies, show a high risk of shortage. Reasons for this lie in Europe’s dependency on imports, increasing global demand, supply concentration and geopolitical issues.

Scientists at the JRC’s Institute for Energy and Transport (IET) examined the use of raw materials, especially metals, in the six priority low-carbon energy technologies of the Commission’s SET-Plan: nuclear, solar, wind, bio-energy, carbon capture and storage and electricity grids.

The findings were that a large-scale deployment of solar energy technologies, for example, will require half the current world supply of tellurium and 25% of the supply of indium. At the same time, the envisaged deployment of wind energy technology in Europe will require large amounts of neodymium and dysprosium for permanent magnet generators.

The report considers possible strategies to avoid or mitigate shortage of these metals, for instance through recycling, increasing Europe’s own production of such metals and by developing of alternative technologies that rely on more common materials.

In the near future the JRC will conduct similar studies on other energy technologies that also use critical metals, such as electric vehicles, electricity storage, lighting and fuel cells.

By: Peggy Greb
Source: http://ec.europa.eu/dgs/jrc/index.cfm?id=1410&obj_id=14150&dt_code=NWS&lang=en

China’s Rare-Earth Domination Keeps Wind Industry On Its Toes

Wind turbine manufacturers are scrambling to find alternatives to a key element used in direct-drive permanent magnet generators (PMGs), thanks to skyrocketing prices and diminishing supplies of crucial rare earths.

China currently provides 94% of the world’s rare earths, including neodymium and dysprosium, which are used in the magnets for direct-drive wind turbine motors. However, the Chinese government has put new restrictions on rare-earth mining that have resulted in lower supply levels, according to a report from research firm Roskill Information Services (RIS).

For instance, this year, the Chinese government issued new regulations requiring all companies that mine rare earths to show they have mandatory production plans, appropriate planning permission, environmental certification and safety licenses.

But it was last year’s tightening of China’s export quota that really impacted the rare-earth market. Between May 2010 and August 2011, Chinese internal prices for neodymium increased eightfold - a reflection of the shortage of rare earths for magnets within China, RIS notes.

China has also ramped up its export taxes on rare earths, causing a shortage in the rest of the world.

As a result, only 25% of the world’s rare-earth supply will come from China by 2015, as demand for the neodymium and dysprosium necessary for the manufacture of magnets for wind turbines will climb at a pace of 7% to 9% per year through 2015, according to RIS’ research.

This growth in demand could result in a supply deficit within that time frame, causing wind turbine manufacturers to rush to find alternatives to PMGs.

Searching for other options

Some companies that rely on PMGs for their wind turbines have already taken steps to avoid the problem.

In September, PMG manufacturer Boulder Wind Power engaged Molycorp - which claims to be the only U.S. supplier of rare earths, and the largest provider outside of China - to be its preferred supplier of rare earths and/or alloys for wind turbine generators.

In addition to avoiding the trade conflicts and price volatility associated with China by using a U.S.-based supplier, the company also uses permanent magnets that do not require dysprosium, a very scarce rare earth.

“By effectively solving the dysprosium supply problem for the wind turbine industry, this technology removes a major hurdle to the expansion of permanent magnet generator wind turbines across global markets,” says Mark A. Smith, Molycorp’s president and CEO.

Direct-drive wind turbine manufacturer Goldwind has taken a similar approach.

“As a result of early price increases, Goldwind began developing efficiencies and alternatives that reduce the amount of rare-earth materials required to manufacture our magnets, which, in turn, mitigates our exposure to future price fluctuations,” Colin Mahoney, spokesperson for Goldwind USA, tells NAW. “This is a scenario that we have long considered.”

Despite RIS’ somewhat negative forecast, some say the worst is over. Because companies are looking to U.S. rare-earth suppliers, such as Molycorp, instead of to China - as well as coming up with alternatives that do not involve rare earths - there is some indication that prices may come down.

In fact, a recent New York Times article claims prices have dropped significantly since August.

Goldwind’s Mahoney agrees with that assessment.

“While the price of rare-earth materials have fluctuated over the past several years, more recent trends have included a dramatic drop in the neodymium market,” he says.

Still, it is uncertain how long these prices can be maintained, as demand for rare earths is expected to soar by 2015, the RIS report notes.

By: Laura DiMugno
Source: http://www.nawindpower.com/e107_plugins/content/content.php?content.8925

EU Feels Pressure of China’s Rare Earths Supply Pinch

The pressure to use low-carbon technologies less damaging to the environment is hitting hard on industries using rare earths in the European Union.

European Commission’s Vice President Antonio Tajani raised the concern regarding the steady supply of rare earths, which are primary components to solar panels and energy-efficient light bulbs.

Rare earth metals are also used in common electronic gadgets like iPhones and iPads.

The site www.theengineer.co.uk cited a report by Tajani’s early this week that a separate plan must be conceived to secure the supply of rare earths and allow the smooth execution of the EC’s Strategic Energy Technology Plan.

“European companies need to have a secure, affordable and undistorted access to raw materials. This is essential for industrial competitiveness, innovation and jobs in Europe,” Tajani’s report said.

The EC has been conducting a study of the rare earths metals in pursuing the low-carbon technology indicated in the plan, which includes nuclear, solar, wind, bio-energy, carbon capture and storage and updating electricity grids.

The study, “Critical Metals in Strategic Energy Technologies,” reveals that five metals commonly used in these technologies (neodymium, dysprosium, indium, tellurium and gallium) show a high risk of shortage, according to www.rareearthassociation.org.

China’s clamping down on rare earth production has led other nations to consider their options in securing their steady supply of the metals.

The United States has been considering building its own stockpile, which some industry specialists said could also distort world prices and the supplies.

China currently holds close to 95 percent of current supply and commanded a premium price raging from 100,000 to 300,000 renminbi early this month.

To be less reliant on China for rare earths, companies like Molycorp, Lynas Corp., Alkane Resources, Globe Metals Mining, among other mining firms have embarked on mineral exploration projects to uncover more of the coveted rare earths.

Recently, the U.S. Congress considered a strategic stock pile of rare earths as they are used in a variety of applications including global positioning and guidance and control systems, according to a Congressional Research Service report.

By Christine Gaylican
Source: http://au.ibtimes.com/articles/249401/20111115/eu-feels-pressure-rare-earths-supply-pinch.htm

JRC Report Reveals Five Rare Earth Metals Show High Scarcity Risk

The study titled ‘Critical Metals in Strategic Energy Technologies’ conducted by the Joint Research Centre (JRC) has revealed that five rare earth metals, which include gallium, tellurium, indium, dysprosium and neodymium, used in the production of low-carbon technologies are at risk of scarcity.

According to the study, the causes of scarcity of these metals are geopolitical problems, supply concentration, rising global demand and Europe’s reliance on imports. Moreover, these materials cannot be replaceable or recyclable easily. This study has been conducted subsequent to the publication of a European Commission report on essential raw materials at European Union in 2010.

The study suggests plans to eliminate scarcity so as to implement the Strategic Energy Technology (SET) Plan of the European Commission to gear up the development and implementation of low-carbon technologies. The study covers the utilization of raw materials, primarily metals, in the six major low-carbon technologies of the SET Plan such as electricity grids, carbon capture and storage, bio-energy, wind, solar and nuclear.

For instance, a large-scale solar power installation will need 25% of the current global supply of indium and 50% of the supply of tellurium, while a large wind power farm will need significant quantities of dysprosium and neodymium for its permanent magnet generators. China supplies almost all these metals to Europe.

The study recommends possible strategies to eliminate or reduce scarcity of these materials through replacing with other less essential materials, implementing alternative technologies and augmenting primary production of Europe by opening dormant or new mines and promoting reutilization and recycling. The JRC will conduct similar studies in the coming years on other energy technologies utilizing critical metals including fuel cells, lighting, electricity storage, and electric vehicles.

Source: http://www.jrc.ec.europa.eu

Rare metals supply a low-carbon question

BRUSSELS, Nov. 10 (UPI) — A world shortage of rare earth metals could hamper deployment of low-carbon energy technologies, a European Commission report says.

Many metals essential for manufacturing low-carbon technologies show a high risk of shortage, scientists at the Commission’s Joint Research Center said, because of Europe’s dependency on imports, increasing global demand, supply concentration and geopolitical issues.

The center analyzed the use of rare earth metals in the six priority low-carbon energy technologies in the Commission’s low carbon plans: nuclear, solar, wind, bio-energy, carbon capture and storage and electricity grids.

There is a risk of shortages of five metals commonly used in these technologies — neodymium, dysprosium, indium, tellurium and gallium — as virtually the whole European supply of a number of these metals comes from China, a center release said Thursday.

“European companies need to have a secure, affordable and undistorted access to raw materials,” Antonio Tajani, Commissioner for Industry and Entrepreneurship, said.

“This is essential for industrial competitiveness, innovation and jobs in Europe.”

Source: http://www.upi.com/

China’s Rare Earths Monopoly - Peril or Opportunity?

September 30, 2011 (Source: Market Oracle) — The prosperity of China’s “authoritarian capitalism” is increasingly rewriting the ground-rules worldwide on the capitalist principles that have dominated the West’s economy for nearly two centuries.

Nowhere is this shadow war more between the two systems more pronounced than in the global arena of production of rare earths elements (REEs), where China currently holds a de facto monopoly, raising concerns from Washington through London to Tokyo about what China might do with its hand across the throat of high-end western technology.

In the capitalist West, as so convincingly dissected by Karl Marx, such a commanding position is a supreme and unique opportunity to squeeze the markets to maximize profits.

Except China apparently has a different agenda, poking yet another hole in Marx’s ironclad dictums about capitalism and monopolies, further refined by Lenin’s screeds after his Bolsheviks inadvertently acceded to power in 1917 in the debacle of Russia’s disastrous involvement in World War One. Far from squeezing its degenerate capitalist customers for maximum profit (and it’s relevant here to call Lenin’s dictum that if you want to hang a capitalist, he’ll sell you the rope to do it), Beijing has apparently adopted a “soft landing” approach on rare earths production, gradually constricting supplies whilst inveigling Western (and particularly Japanese) high tech companies to relocate production lines to China to ensure continued access to the essential commodities.

REEs are found in everyday products, from laptops to iPods to flat screen televisions and hybrid cars, which use more than 20 pounds of REEs per car. Other RRE uses include phosphors in television displays, PDAs, lasers, green engine technology, fiber optics, magnets, catalytic converters, fluorescent lamps, rechargeable batteries, magnetic refrigeration, wind turbines, and, of most interest to the Pentagon, strategic military weaponry, including cruise missiles.

Technology transfer is the essential overlooked component in China’s economic rise, and Beijing played Western greed on the subject like a Stradivarius, promising future access to China’s massive market in return, an opium dream that rarely occurred for most companies. You want unimpeded access to Chinese RREs? Fine – relocate a portion on your production lines here, or…

Which brings us back to today’s topic.

Rare earths and investment – where to go?

China is riding a profitable wave, which depending on what figures you read, produces 95-97 percent of current global supply, and unprocessed raw earth earths ores are currently going for more than $100,000 a ton, or $50 a pound, which some of the exotica fetching far more (niobium prices has increase an astounding 1,000 percent over the last year). Rare earth elements like dysprosium, terbium and europium come mainly from southern China.

According to a United States Energy Department report, dysprosium, crucial for clean energy products rose to $132 a pound in 2010 from $6.50 a pound in 2003.

The soaring prices however have also invigorated many countries and producers to begin looking in their own back yards, for both new deposits and former mining sites that were shuttered when production cost made them uneconomic before prices went through the ceiling.

However, a number of unknown factors play into developing alternative sources to current Chinese RRE production. These include first prospecting possible sites, secondly, their purity and third, initial production costs, where modest Chinese labor costs are a clear factor.

The 17 RRE elements on the Periodic Table are actually not rare, with the two least abundant of the group 200 times more abundant than gold. They are, however, hard to find in large enough concentrations to support costs of extraction, and are frequently found in conjunction with radioactive thorium, leading to significant waste problems.

At hearings last week before U.S. House of Representatives Committee on Foreign Affairs Subcommittee on Asia and the Pacific, Molycorp, Inc. President and Chief Executive Officer Mark A. Smith stated that his company was positioned to fulfill American rare earth needs, currently estimated at 15,000-18,000 tons per year, by the end of 2012 if it can ramp up production at its Mountain Pass, California facility.

Which brings us back to foreign producers. A year ago Molycorp announced that it was reopening its former RRE mine in Mountain Pass, Calif., which years ago used to be the world’s main mine for rare earth elements, filing with the SEC for an initial public offering to help raise the nearly $500 million needed to reopen and expand the mine. Low prices caused by Chinese competition caused the Mountain Pass mine to be shuttered in 2002.

Mountain Pass was discovered in 1949 by uranium prospectors who noticed radioactivity and its output dominated rare earth element production through the 1980s; Mountain Pass Europium made the world’s first color televisions possible.

Molycorp plans to increase its capacity to mine and refine neodymium for rare earth magnets, which are extremely lightweight and are used in many high-tech applications and intends to resume production of lower-value rare earth elements like cerium, used in industrial processes like polishing glass and water filtration.

In one of those historic economic ironies, China was able to increase its RRE production in the 1980s by initially hiring American advisers who formerly worked at Mountain Pass.

The record-high REE prices are also underwriting exploration activities worldwide by more than six dozen other companies in the United States, Canada, South Africa, Malaysia and Central Asia to open new RRE mines, but with each start-up typically raising $10 million to $30 million, not all will succeed. That said, the future is bright, as almost two-thirds of the world’s supply of REEs exists outside of China and accordingly, China’s current monopoly of REE production will not last.

So where do investors look to cash in on the RRE boom?

First, do your homework.

Exhibit A is Moylcorp, which would seem to be in unassailable position as regards U.S. production, but which nevertheless on 20 September after JPMorgan Chase & Co. lowered its rating of the company, citing declines in rare-earth prices, causing its stock to plummet 22 percent in New York Stock Exchange composite trading, despite being the best-performing U.S. IPO in 2010 after beginning trading in July, more than tripling after rare-earth prices soared as China cut export quotas.

Is there money to be made in RREs?

Undoubtedly – but the homework for the canny investor needs to extend beyond spreadsheets to geopolitics, mining lore, chemistry and Wall Street puffery. That said, it seems likely that whatever U.S.-based company can cover the Pentagon’s RRE requirements is likely to see more than a minor boost in its bottom line.

Gentlemen, place your bets – but do your homework first.

Rare earth elements vital to electronics industry

What do ics, lasers, optical fibres, capacitors, displays and headphones have in common? Answer: they are all electronic products that depend on one or more of the rare earth elements. And that list is far from complete.

 There are 17 rare earth elements, all vital to the electronics industry in some form. Yet, despite their name, some rare earth element

s are relatively plentiful: cerium is, apparently, as abundant as copper. They are regarded as ‘rare’ because deposits of these elements are generally not exploitable commercially.

Though typically used in relatively small quantities per product, a major worry has emerged recently about the guaranteed continuation of their supply – some 97% of rare earths are currently supplied by China.

Over the last few years, China has been reducing its exports of rare earths and recently cut back more drastically, by around 70%

. And an ominous note was sounded when China completely halted supplies to Japan after a row about Japan’s arrest of a Chinese boat captain. He was released and supplies resumed. Squabbles aside, the prediction is that, within a few years, China will need its entire output of rare earths to satisfy its own domestic demand.

So action is being taken to avoid the drastic scenario of the supply of rare earths simply coming to a halt (see below). If it did, it is astonishing how many electronic products we use every day would become either much more difficult – even impossible – to make or much more expensive.

Take one of the most widely used rare earths – neodymium. It was first used to generate the light in green laser pointers, but then it was found that, when mixed with iron and boron, neodymium makes magnets that are weight for weight 12 times stronger than conventional iron magnets. Result: neodymium magnets are used in in-ear headphones, microphones, loudspeakers and hard disk drives, as well as electric motors for hybrid cars and generators.

Where low mass is important, they are vital: for example, in laptops, they provide finer control in the motors that spin the hard disk and the arm that writes and reads data to and from it, allowing much more information to be stored in the same area.

In its Critical Materials Strategy, the US Department of Energy (DoE) estimates new uses of neodymium, in products like wind tu

rbines and electric cars, could make up 40% of demand in an already overstretched market, which is why any shortages would be critical.

Most of the rare earths vital to electronics are less well known: erbium is one example, a crucial ingredient in optical fibres. For long distance optical fibre transmission, amplification is vital and is achieved with the help of erbium. Embedded within short sections of the optical fibre, excitable ions of erbium are pushed into a high energy state by irradiating them with a laser. Light signals travelling down the fibre stimulate the erbium ions to release their stored energy as more light of precisely the correct wavelength, amplifying the signals.

Tellurium is an element that could see a huge increase in demand because in 2009, solar cells made from thin films of cadmium telluride became the first to outdo silicon panels in terms of the cost of generating a Watt of electricity. Until now, there has been little interest in tellurium, but if it leads to significantly cheaper solar power, demand will rocket and that is why the DoE anticipates potential shortages by 2025.

Hafnium is another rare earth proving itself vital to the semiconductor industry; hafnium oxide is a highly effective electrical ins

ulator. It outperforms the standard transistor material, silicon dioxide, in reducing leakage current, while switching 20% faster. It has been a major factor in enabling the industry to move to ever smaller process nodes.

Also central to semiconductors is tantalum, key to billions of capacitors used worldwide in products like smartphones and tablet computers. In its pure form, this metal forms one of two conducting plates on which charge is stored. As an oxide, it is an excellent insulator, preventing current leakage between the plates, and is also self healing, reforming to plug any current leakage.

One of the most widely used rare earths is indium, which we all spend a lot of time looking at. The alloy indium tin oxide (ITO) provides the rare combination of both electrical conductivity and optical transparency, which makes it perfect for flat screen displays and tvs,

where it forms the see through front electrode controlling each pixel. A layer of ITO on a smartphone’s screen gives it the touch sensitive conductivity to which we have been accustomed in the last few years. Mixed with other metals, indium becomes a light collector and can be used to create new kinds of solar cells, together with copper and selenium.

Another rare earth valuable for its magnetic properties is dysprosium. When mixed with terbium and iron, it creates the alloy Terfenol D, which changes shape in response to a magnetic field; a property known as magnetostriction. Dysprosium can also handle heat

; while magnets made from a pure neodymium-iron-boron alloy lose magnetisation at more than 300°C, adding a small amount of dysprosium solves the problem. This make the element invaluable in magnets used in devices such as turbines and hard disk drives.

Other rare earths include: technetium, used in medical imaging; lanthanum and, the main components of a ‘mischmetal’ (an alloy of rare earth elements) used to create the negative electrode in nickel metal hydride batteries – and cerium also helps to polish disk drives and monitor screens; yttrium, important in microwave communication, and yttrium iron garnets act as resonators in frequency meters; and europium and terbium.

The last have been used for decades to produce images in colour tvs, thanks to their phosphorescent properties – terbium for yellow-green and europium for blue and red. More recently, energy saving compact fluorescent light bulbs have used them to generate the same warm light as the incandescent tungsten bulbs they replaced.

Is there a single reason why the rare earths have proved so valuable for such a range of technologies? The answer is no – it is more a result of each element’s particular physical characteristics, notably the electron configuration of the atoms, according to one of the world’s leading experts, Karl Gschneidner, a senior metallurgist at the DoE’s Ames Laboratory.

“Some of the properties are quite similar; basically, their chemical properties. That is why they are difficult to separate from each other in their ores and that is why they are mixed together in the ores. But many of the physical properties vary quite a bit from one another, especially those which depend upon the 4f electron (a particular electron shell in the configuration of the atom), that is the magnetic, optical and electronic properties. Even some of the physical properties, which are not directly connected to the 4f electrons, vary considerably. For example the melting points vary from 798°C for cerium to 1663°C for lutetium.”

What makes the rare earths so special is the way they can react with other elements to get results that neither could achieve alone, especially in the areas of magnets and phosphors, as Robert Jaffe, a Professor of Physics at MIT, explains.

“The result is high field strength, high coercivity, light weight magnets, clearly valuable in tiny devices where magnetically stored information has to be moved around, like hard disk read/write operations. The magnetic properties of pure metals and relatively simple alloys have been thoroughly explored and there is nothing as good as rare earth magnets. Two paradigms for magnetic material are NeBFe (neodymium-boron-iron) and SmCo (samarium-cobalt), with the former most popular now.

“In phosphors, europium, terbium and others absorb high frequency light and then re emit the light in regions of the spectrum that are very useful in manipulation of colour, hence their use in flat panel displays and compact fluorescent lights.”

Another example is neodymium oxide, which can be added to crt glass to enhance picture brightness by absorbing yellow light waves. Neodymium has a strong absorption band centred at 580nm, which helps clarify the eye’s discrimination between reds and greens.

Given how vital they are for the electronics industry and other technologies – by one estimate, £3trillion worth of industries depend on them – it is remarkable that the world has been so complacent about sourcing rare earths, allowing a single country to virtually monopolise the supply. But that is now changing.

For example, the Mountain Pass mine in California is being reactivated by Molycorp Minerals in a $781million project, having been mothballed in 2002. Others include the Nolans and Mount Weld Projects in Australia, a site at Hoidas Lake in Canada, Lai Chau in Vietnam and others in Russia and Malaysia.

In Elk Creek, Nebraska, Canadian company Quantum Rare Earth Development is drilling to look for supplies and has called on President Obama to move aggressively to create a stockpile of rare earths.

Another associated problem is the lack of people with rare earth expertise, as Gschneidner says.

“There is a serious lack of technically trained personnel to bring the entire rare earth industry – from mining to OEMs – up to full speed in the next few years. Before the disruption of the US rare earth industry, about 25,000 people were employed in all aspects. Today, there are only about 1500.”

Despite these moves, it could be years before they enhance supplies significantly. For the longer term, there are prospects of better sources emerging. Just a couple of months ago, Japanese scientists from the University of Tokyo announced they had found the minerals in the floor of the Pacific Ocean in such high density that a single square kilometre of ocean floor could provide 20% of current annual world consumption. Two regions near Hawaii and Tahiti might contain as much as 100billion tonnes.

The team was led to the sea floor because they reasoned that many rock samples on land containing metallic elements were originally laid down as ocean sediments. “It seems natural to find rare earth element rich mud on the sea floor,” they said.

A final extraordinary fact about rare earths is that, despite their importance, we have hardly bothered to recycle them at all. In an age when metals like aluminium, copper, lead and tin have recycling rates of between 25% and 75%, it is estimated that only 1% of rare earths are recycled. Japan alone is estimated to have 300,000 tons of rare earths in unused electronic goods. If we do not correct that quickly, over the next few years at least, rare earths could live up to their name with a vengeance.

David Boothroyd
Source: http://www.newelectronics.co.uk

Nanoparticle Magnets Conserve Rare Earth Metals

Professor George Hadjipanayis. Source: University of Delaware.

Researchers at the University of Delaware and at General Electric Global Research are independently developing new magnets using nanoparticles to preserve the increasingly small supply of rare earth metals typically used in the strongest magnets made today. These new magnets are also stronger and lighter than traditional magnets and should increase efficiency as well as conserve the dwindling supply of neodymium, dysprosium, and terbium.

Demand for these metals is quickly outstripping their availability. This may be exacerbated by stricter export policies from China where most of the current supply is found. The Department of Energy has funded two independent projects looking to circumvent this scarcity by using nanoparticles to create magnets instead of large quantities of metals. Both projects are taking the same general approach to the problem - creating magnets from nanoparticles combining very small amounts of these rare metals with particles of iron and other more common metals. The small scale structure of these compounds greatly increases the magnetism found in the metal alone, requiring much less metal to achieve the same - or better - results found in normal magnets.

GE is being fairly tight lipped about the specific composites in its magnets and about their manufacturing process. They claim to have successfully produced thin films of magnets using their process and are working on making magnets large enough for practical use. The other research group - headed by the Chairman of the Physics Department George Hadjipanayis at the University of Delaware - is more open about its methods but is also having difficulty scaling their process up sufficiently for practical use.

The team at Delaware is using a combination of iron and cobalt with the standard rare metals in particles of around 20-30 nanometers to create its nanomagnetic material. They are trying to increase the magnetism of these particles and discover ways to assemble them into functional two and three dimensional arrays that act like traditional magnets. Their current research has general applications, but specific projects are focused on creating viable storage media and magnets for various types of medical research and technology.

TFOT has previously reported on other research into magnets and using magnets including superconductivity research at the Los Alamos National Laboratory Magnet Lab and magnetic spaceshields that could protect spaceships from high speed particles and solar flares. TFOT has also reported on other nanoparticle research including a nanoparticle vaccine for Type 1 diabetes, silver nanoparticles for creating small electronics, and a way to encapsulate cancer treatments in nanoparticles.

Read more about the University of Delaware research into magnetic nanoparticles on the group website. Read more about the initial DOE grant funding this research in this University of Delaware

July 26, 2011 - Janice Karin