Supply Threats Persist For Thin-Film Solar Materials Due To Competition
One year ago, a report from the U.S. Department of Energy (DOE) on the global supply of essential PV module materials predicted possible disruptions for thin-film manufacturing.
The availability of indium, gallium and tellurium was examined in the context of current and future production needs, and the DOE found cause for concern. Indium and tellurium were pegged as especially vulnerable to supply tightness and price volatility, according to both the report and several market analysts at the time.
(See “New Government Report Identifies Supply Risks For Thin-Film PV Materials” in the February 2011 issue of Solar Industry.)
Now, the DOE has released the latest edition of its Critical Materials Strategy. Have the worries over thin-film PV materials supply eased? According to the DOE, the general supply-demand picture for indium, gallium and tellurium has “improved slightly,” but the situation is not entirely reassuring. The three metals are still highlighted (alongside neodymium and dysprosium) as clean-energy materials that face a “significant risk of supply chain bottlenecks in the next two decades.”
The report attributes the slight improvement primarily to decreased demand for the three thin-film materials: Although PV deployment is expected to grow, the requirements of the materials per module are expected to shrink.
For copper indium gallium diselenide (CIGS) modules, manufacturers are shifting to compositions with higher proportions of gallium and lower concentrations of indium, the DOE says. The result is a “partial trade-off in the potential for supply risk between the two elements.” At the same time, CIGS’ market share assumption has been reduced under the DOE’s new calculations, lowering projected demand for both indium and gallium.
Cadmium telluride (CdTe) thin-film modules currently account for approximately 10% of the PV market, according to the report. Declining silicon prices may threaten this slice of the market, but high tellurium costs and the increasing need for CdTe manufacturers to compete for supply with non-PV companies requiring tellurium continue to cause supply headaches.
“The cost of tellurium is a critical issue for CdTe solar cell makers, and the industry is working to lower material use and increasing recovery of new scrap to reduce reliance on primary tellurium,” the DOE says in the report.
Although short-term supply of tellurium appears adequate, future capacity increases may be insufficient to supply both CdTe manufacturing and the multitude of other manufacturing sectors that use tellurium. Under one scenario modeled in the report, tellurium supply would need to increase 50% more than its projected 2015 total in order to meet expected demand.
Indium and gallium have also experienced increased popularity in non-PV manufacturing uses, such as semiconductor applications, flat-panel displays, and coatings for smartphones and tablet computers. The DOE forecasts that as a result, supplies may run short by 2015 unless production of these materials is increased - or non-PV demand lessens.
Of the two metals, gallium poses more cause for concern, as the DOE has adjusted its assumptions of future gallium use under CIGS manufacturers’ expected manufacturing modifications.
“These higher estimates [of gallium requirements] are driven largely by the assumption that gallium will increasingly be substituted for indium in CIGS composition,” the DOE explains. This change points to the benefits of reducing material intensity in other aspects of PV manufacturing, such as reducing cell thickness and improving processing efficiency.
Overall, indium, gallium and tellurium all receive moderate scores (2 or 3 on a scale of 1 to 4) from the DOE with regard to both their importance to clean energy and short- and medium-term supply risk.
In order to help mitigate possible supply disruptions that could threaten the manufacturing and deployment of PV, as well as other types of clean energy, the agency has developed a three-pronged approach.
“First, diversified global supply chains are essential,” the DOE stresses in the report. “To manage supply risk, multiple sources of materials are required. This means taking steps to facilitate extraction, processing and manufacturing here in the United States, as well as encouraging other nations to expedite alternative supplies.”
The second strategy relies on developing alternatives to materials whose supply may be constrained. For PV, one DOE research program focuses on advancements in thin-film formulations such as copper-zinc-tin and sulfide-selenide. Another initiative funds research and development into PV inks based on earth-abundant materials such as zinc, sulfur and copper.
“Several projects also seek to use iron pyrite - also known as fool’s gold - to develop prototype solar cells,” the DOE notes in the report. “Pyrite is non-toxic, inexpensive, and is the most abundant sulfide mineral in the Earth’s crust.”
Finally, improving recycling and reuse mechanisms can reduce demand for new materials, the DOE says, adding that these strategies also can help improve the sustainability of manufacturing processes.
Source: http://www.aer-online.com/e107_plugins/content/content.php?content.9408
Photo: Enbridge Inc.’s 5 MW Tilbury solar project in Ontario uses First Solar’s cadmium telluride thin-film modules. Photo credit: Enbridge
Supply Threats Persist For Thin-Film Solar Materials Due To Competition
One year ago, a report from the U.S. Department of Energy (DOE) on the global supply of essential PV module materials predicted possible disruptions for thin-film manufacturing.
The availability of indium, gallium and tellurium was examined in the context of current and future production needs, and the DOE found cause for concern. Indium and tellurium were pegged as especially vulnerable to supply tightness and price volatility, according to both the report and several market analysts at the time.
Now, the DOE has released the latest edition of its Critical Materials Strategy. Have the worries over thin-film PV materials supply eased? According to the DOE, the general supply-demand picture for indium, gallium and tellurium has “improved slightly,” but the situation is not entirely reassuring. The three metals are still highlighted (alongside neodymium and dysprosium) as clean-energy materials that face a “significant risk of supply chain bottlenecks in the next two decades.”
The report attributes the slight improvement primarily to decreased demand for the three thin-film materials: Although PV deployment is expected to grow, the requirements of the materials per module are expected to shrink.
For copper indium gallium diselenide (CIGS) modules, manufacturers are shifting to compositions with higher proportions of gallium and lower concentrations of indium, the DOE says. The result is a “partial trade-off in the potential for supply risk between the two elements.” At the same time, CIGS’ market share assumption has been reduced under the DOE’s new calculations, lowering projected demand for both indium and gallium.
Cadmium telluride (CdTe) thin-film modules currently account for approximately 10% of the PV market, according to the report. Declining silicon prices may threaten this slice of the market, but high tellurium costs and the increasing need for CdTe manufacturers to compete for supply with non-PV companies requiring tellurium continue to cause supply headaches.
“The cost of tellurium is a critical issue for CdTe solar cell makers, and the industry is working to lower material use and increasing recovery of new scrap to reduce reliance on primary tellurium,” the DOE says in the report.
Although short-term supply of tellurium appears adequate, future capacity increases may be insufficient to supply both CdTe manufacturing and the multitude of other manufacturing sectors that use tellurium. Under one scenario modeled in the report, tellurium supply would need to increase 50% more than its projected 2015 total in order to meet expected demand.
Indium and gallium have also experienced increased popularity in non-PV manufacturing uses, such as semiconductor applications, flat-panel displays, and coatings for smartphones and tablet computers. The DOE forecasts that as a result, supplies may run short by 2015 unless production of these materials is increased - or non-PV demand lessens.
Of the two metals, gallium poses more cause for concern, as the DOE has adjusted its assumptions of future gallium use under CIGS manufacturers’ expected manufacturing modifications.
“These higher estimates [of gallium requirements] are driven largely by the assumption that gallium will increasingly be substituted for indium in CIGS composition,” the DOE explains. This change points to the benefits of reducing material intensity in other aspects of PV manufacturing, such as reducing cell thickness and improving processing efficiency.
Overall, indium, gallium and tellurium all receive moderate scores (2 or 3 on a scale of 1 to 4) from the DOE with regard to both their importance to clean energy and short- and medium-term supply risk.
In order to help mitigate possible supply disruptions that could threaten the manufacturing and deployment of PV, as well as other types of clean energy, the agency has developed a three-pronged approach.
“First, diversified global supply chains are essential,” the DOE stresses in the report. “To manage supply risk, multiple sources of materials are required. This means taking steps to facilitate extraction, processing and manufacturing here in the United States, as well as encouraging other nations to expedite alternative supplies.”
The second strategy relies on developing alternatives to materials whose supply may be constrained. For PV, one DOE research program focuses on advancements in thin-film formulations such as copper-zinc-tin and sulfide-selenide. Another initiative funds research and development into PV inks based on earth-abundant materials such as zinc, sulfur and copper.
“Several projects also seek to use iron pyrite - also known as fool’s gold - to develop prototype solar cells,” the DOE notes in the report. “Pyrite is non-toxic, inexpensive, and is the most abundant sulfide mineral in the Earth’s crust.”
Finally, improving recycling and reuse mechanisms can reduce demand for new materials, the DOE says, adding that these strategies also can help improve the sustainability of manufacturing processes.
By: SI Staff
Source: http://www.aer-online.com/e107_plugins/content/content.php?content.9408
Photo: Enbridge Inc.’s 5 MW Tilbury solar project in Ontario uses First Solar’s cadmium telluride thin-film modules. Photo credit: Enbridge
Endangered Elements: Tungsten Among China’s Potential Embargo List
ANALYSIS – ProspectingJournal.com – It didn’t take long for the panic to set in, last year, when the Chinese government flexed its muscle by threatening the world’s Rare Earth Element (REE) supply. With 95% of REE supplies coming from China, that scare was indeed legitimate. But REEs aren’t the only elements with which China has the potential to choke off. On American Elements’ 2011 Top 5 US Endangered Elements List, three elements (tungsten, indium and neodymium) have over 50% of world supply coming from Chinese mines.
To refresh the memory of those who followed the rare earth surge from last year, and the subsequent piquing of interest in rare earth companies, it began with Japan. As the summer of 2010 was coming to a close, reports of an embargo of shipments to Japan for REEs raised concern for manufacturers who depend upon the elements for production primarily in the tech industry. Within a month, that embargo spread to North America and Europe, and concern over Chinese monopolization rose, along with REE prices, and those of the companies devoted to them.
When the embargo ended, relief came to the sector, while the pace of development outside of China received only a minor increase. The threat of supply shortages still lingers, especially with tungsten, indium and neodymium.
The example of tungsten is not to be ignored, as 85% of global production comes from China, which has already indicated it might end all exports altogether due to domestic demand increases.
With the highest melting point and greatest tensile strength of all elements, tungsten’s importance is unquestionable. Used in all situations that call for high temperature thresholds or hardness and strength, tungsten is imperative to many modern living standards that depend upon it. From a US perspective, the element’s use in the aerospace program, electronics and military (including in bullets and armor) is critical. To the mining industry as a whole, tungsten is a savior with many uses within the assembly of mining equipment itself, including drills in need of durability.
Strangely enough, the United States dismantled domestic production of tungsten ore in 1994 with the last tungsten mine, the Pine Creek Mine in Inoyo, California, going down as a historical footnote en route to Chinese dependence.
Today, tungsten production remains primarily within China, but awareness of a need to develop outside of the PRC is becoming clearer. Options in the western hemisphere are appearing, and may soon be getting the attention they need to aid this drive for domestic independence. Juniors such as North American Tungsten [NTC – TSX.V] and Playfair Mining [PLY – TSX.V] may provide answers that mitigate a possible future supply breakdown.
For North American Tungsten, the title of being the western world’s leader in tungsten production doesn’t come lightly. Through developing its Cantung Mine, it provides tungsten concentrate production within the borders of Canada’s Northwest Territories, which from an international standpoint is a much more secure mining investment environment to work within.
At a much earlier stage, Playfair Mining is not yet a producer, but is heavily leveraged to the price of tungsten, which today sits around $440/MTU (“metric tonne unit”) or over $20/lb. With a goal in mind to partner with an end user of tungsten metal in order to finance its Grey River deposit into production, Playfair is well aware of the potential impact a tungsten shortage would carry.
Due to its high level of use in the manufacturing sector, a significant number of Fortune 500 companies are dependant upon tungsten’s availability. General Electric and its Tungsten Products Division, along with others like Kennametal and ATI Firth Sterling are among those that would most likely benefit from securing a long term tungsten supply, and are among potential targets should Playfair seek a high-worth partner to put its nearest term tungsten property into production.
The company has 4 high-grade deposits with two located in the Yukon, one in the Northwest Territories and another on the southern coast of Newfoundland. Each of the properties was acquired strategically during a period of massively deflated tungsten prices, prior to this latest surge over the $440/MTU mark. This increase represents a 70% rise from the recent low prices that graced Playfair’s entry period. While the commodity’s price has risen, the company’s stock has yet to follow suit.
While the current price of the stock seems to have languished, the team is making strides to be better prepared for when the bigger end-users in need of tungsten come knocking. The board includes experienced individuals who have taken deals into production before, as well as Director James Robertson who took the last big tungsten company outside of China to successful acquisition.
In both combined 43-101 compliant and non-compliant resource categories, Playfair’s tungsten properties contain more than an estimated 5.5 million MTUs of WO3. It’s to be expected, though, that since Playfair is an exploration company, these resources have room for expansion.
As economic uncertainty lingers in all global markets, crucial and endangered elements such as REEs, tungsten, indium and neodymium will be within the watchful eye of western manufacturers in need of these ingredients for their operations. Whether another anticipated panic is inflicted by possible impending embargo actions by China doesn’t change the dependence we have on endangered elements. And like last year’s REE crisis, a price surge on those companies were set to move prior complications is entirely a likely scenario.
By: G. Joel Chury
Source: http://www.prospectingjournal.com/endangered-elements-tungsten-among-chinas-potential-embargo-list_12_21_2012/
Solar cell breakthrough could hit 40 percent efficiency
Researchers using novel materials to build photovoltaic cells say their efforts could nearly double the efficiency of silicon-based solar cells.
The cells being developed by teams from the University of Arkansas and Arkansas State University have the potential to achieve a light-to-energy conversion rate, or solar efficiency, of 40 percent or better, according to the researchers.
The photovoltaic cells are intended for use in satellites and space instruments. Currently, the silicon-based solar cells that NASA uses in its satellites and instruments have efficiencies of only up to 23 percent, according to NASA statistics.
And today it was announced that the research teams are getting more money-a total of $1 million in new funding-to further their work. Of that, about $735,000 will come from NASA, $237,000 from the University of Arkansas, and $86,000 from Arkansas State.
Omar Manasreh, professor of electrical engineering at the Optoelectronics Research Lab at the University of Arkansas, has been developing the technology so far with a $1.3 million grant from the U.S. Air Force Office of Scientific Research. He leads the research team along with Liangmin Zhang, assistant professor at Arkansas State.
“It [the grant] will create new opportunities for further development in the field of novel photovoltaic materials and devices,” Manasreh said in a statement.
Manasreh has been testing two separate methods for growing metallic nanoparticles using a novel combination of materials as the semiconductor. While CIGS (copper, indium, gallium and selenium) solar cells are not uncommon, Manasreh is using a variation of CIGS-based cells-CuInSe2 and CuInGaSe2-to generate molecules that bind to a central atom and that are known as volatile ligands. The nanocrystals can then be converted into thin-film solar cells, or incorporated into nanotubes, by combining the material with either titanium dioxide or zinc oxide. His second approach uses indium arsenide (InAs) a material commonly used in infrared detectors.
“The second approach uses molecular beam epitaxy, a method of depositing nanocrystals, to create quantum dots made of indium arsenide (InAs). Quantum dots are nano-sized particles of semiconductor material,” according to the University of Arkansas.
When exposed to ultraviolet light, the nanocrystals grown in liquid emit brighter light enhancing the response of the nanocrystals. The phenomenon shows the potential to increase the energy conversion efficiency of the materials (see photo).
This research team isn’t the first to experiment with growing nanoparticles using liquid. In 2007, Calif-based company Innovalight developed a “silicon ink” for creating crystalline silicon solar cells that works by inserting nanoparticles into a solvent, pouring the liquid on a substrate, and then removing the liquid to be left with a silicon crystalline structure. At the time, the solar cells made from the method had a 22 percent efficiency. Innovalight was acquired by Dupont earlier this year.
by Candace Lombardi
Source: news.cnet.com