palladium

U.S. Preparing for the Coming Shortages in Metals and Minerals

Rare Earth Elements critical to 80% of Modern Industry

Many if not most metals, rare earth minerals and other elements used to make everything from photovoltaic panels and cellphone displays to the permanent magnets in cutting edge new wind generators and motors will become limited in availability. Geologists are warning of shortages and bottlenecks of some metals due to an insatiable demand for consumer products.

 2010 saw China restrict the export of neodymium, which is used in wind generators and motors. The move was said to direct the supplies toward a massive wind generation project within China. What happened was a two-tiered price for neodymium formed, one inside China and another, higher price, for the rest of the world.

Dr. Gawen Jenkin, of the Department of Geology, University of Leicester, and the lead convenor of the Fermor Meeting of the Geological Society of London that met to discuss this issue is reported in the journal Nature Geoscience, highlighting the dangers in the inexorable surge in demand for metals.

Dr Jenkin said: “Mobile phones contain copper, nickel, silver and zinc, aluminum, gold, lead, manganese, palladium, platinum and tin. More than a billion people will buy a mobile in a year — so that’s quite a lot of metal. And then there’s the neodymium in your laptop, the iron in your car, the aluminum in that soft drinks can — the list goes on…”

Jenkin continues, “With ever-greater use of these metals, are we running out? That was one of the questions we addressed at our meeting. It is reassuring that there’s no immediate danger of ‘peak metal’ as there’s quite a lot in the ground, still — but there will be shortages and bottlenecks of some metals like indium due to increased demand. That means that exploration for metal commodities is now a key skill. It’s never been a better time to become an economic geologist, working with a mining company. It’s one of the better-kept secrets of employment in a recession-hit world.”

There’s a “can’t be missed” clue on education and employment prospects. “And a key factor in turning young people away from the large mining companies — their reputation for environmental unfriendliness — is being turned around as they make ever-greater efforts to integrate with local communities for their mutual benefit,” said Jenkin.

Among the basics that need to be grasped to understand the current state of affairs are how rare many metals, minerals and elements really are. Some are plentiful, but only found in rare places or are difficult to extract. Indium, for instance, is a byproduct of zinc mining and extraction.

Economics professor Roderick Eggert of the Colorado School of Mines explains at the U.S. Geological Survey meeting indium is not economically viable to extract unless zinc is being sought in the same ore. Others are just plain scarce, like rhenium and tellurium, which only exist in very small amounts in Earth’s crust.

There are two fundamental responses to this kind of situation: use less of these minerals or improve the extraction of them from other ores in other parts of the world. The improved extraction methods seem to be where most people are heading.

Kathleen Benedetto of the Subcommittee on Energy and Mineral Resources, Committee on Natural Resources, U.S. House of Representatives explains the Congress’ position for now by saying in a report abstract, “China’s efforts to restrict exports of mineral commodities garnered the attention of Congress and highlighted the need for the United States to assess the state of the Nation’s mineral policies and examine opportunities to produce rare earths and other strategic and critical minerals domestically. Nine bills have been introduced in the House and Senate to address supply disruptions of rare earths and other important mineral commodities.”

Another prominent session presenter Marcia McNutt, director of the U.S. Geological Survey adds in her report abstract, “Deposits of rare earth elements and other critical minerals occur throughout the Nation.” That information puts the current events in the larger historical perspective of mineral resource management, which has been the U.S. Geological Survey’s job for more than 130 years. McNutt points out something interested citizens should be aware of, “The definition of ‘a critical mineral or material’ is extremely time dependent, as advances in materials science yield new products and the adoption of new technologies result in shifts in both supply and demand.”

The geopolitical implications of critical minerals have started bringing together scientists, economists and policy makers. Monday Oct 10th saw the professors presenting their research alongside high-level representatives from the U.S. Congress and Senate, the Office of the President of the U.S., the U.S. Geological Survey, in a session at the meeting of the Geological Society of America in Minneapolis.

Those metals, rare earth minerals and elements are basic building materials for much of what makes energy efficiency, a growing economy, lots of employment and affordable technology possible. Its good to see some action, if it’s only talking for now. At least the people who should be keeping the system working are sensing the forthcoming problem.

Source: OilPrice.com

The Most At Risk Metals

Rare Earth Elements critical to 80% of Modern Industry

Much has been made, maybe too much, of the dire straits the world will shortly be in when the Chinese finally choke off supplies of rare earth metals, or elements (REE) to the outside world. No one would deny REEs have many critical uses, but you can’€™t help wondering if there aren’t a lot of vested interests behind some of the clamor.

In the process, the supply side constraints on many other metals (with a few exceptions) are overlooked, until now, that is. The British Geological Survey has produced an intriguing report called the Risk List 2011. The analysis is, in their own words, intended to give a quick and simple indication of the relative risk to the supply of 52 chemical elements or element groups which we need to maintain our economy and lifestyle.

The list is much more than a simple list of rarity, REEs being a case in point; they are not rare, but the combination of relative abundance, location of deposits and concentration of production in certain countries makes them a much higher risk than metals that are rarer, but whose production is more widely distributed among politically reliable sources. Each element is given a score from 1.0 to 5.0 for each of the following criteria:

A score of 1 indicates a low risk, a score of 5 a high risk. The scores for each criterion are summed to give an overall risk to supply score, obviously the larger the score, the greater the risk.

Low-Risk Metals

The lowest scores are (from the bottom up):

  • Titanium 2.5
  • Aluminium 3.5
  • Chromium 3.5
  • Iron 3.5
  • Thorium 7.0
  • Bismuth 7.0
  • Rare Earth’s 8.0
  • Tungsten 8.5
  • PGM’s 8.5
  • Antimony 8.5

No major surprises there. Occurrence is plentiful and widely distributed, as is production. One may have expected to see titanium and chrome, both of which rely in part on supplies from Russia and South Africa, to have scored a little higher, but the report lists Australia and Canada as the leading producers for the first three and although China is listed as the leading producer for iron ore, they are also the leading consumer and a net importer.

Higher-Risk Metals

Unfortunately, not so at the other end of the list. China comes out as the leading producer of 27 of the elements listed and ranks as the leading producer in six of the top nine most at-risk elements, all of which are metals. The reason we chose nine instead of the top 10 is because items 10 and 11 are bromine and graphite respectively, but following these, the list promptly gets back into metals through the middle orders.

Extract from BGS Risk List 2011:

*PGM’€™s include the Platinum Group Metals: Ruthenium, Palladium, Osmium, Iridium and of course Platinum, but interestingly Rhodium is not mentioned. Source: British Geological Survey.

How often do we hear of supply risks to antimony, mercury or tungsten? Yet these metals are used in a bewildering array of applications. China produces nearly 90 percent of the world’€™s mined antimony and 85 percent of the world’€™s mined tungsten, according to the USGS. Arguably, tungsten is as critical as REEs, used as it is in a huge array of metal alloys for electrical, strength and wear resistant applications. Like REEs, China is restricting exports of tungsten and the BGS ranks the supply risks as even higher than REEs.

The purpose of the Risk List is not to cause alarm, but to alert policy makers and consumers to possible supply disruption in the future. As competition for resources grows, these metals currently present the highest risk due to geopolitics, resource nationalism (state control of production), strikes and natural disasters impacting a highly concentrated supply base. Metals buyers and product designers could do worse than spend a few minutes perusing this list and reflecting on their own raw material supply arrangements.

By Stuart Burns
September 15th, 2011
www.agmetalminer.com

China Will Continue to Dominate the Rare Earths Market in 2011

Editor’s Note: Prices for many precious and base metals hit record highs in 2010, as economic uncertainty rattled around the globe. What does 2011 hold for gold, silver, platinum, palladium, copper and other metals? Kitco News reporters have prepared a series of stories which examine what is in store for 2011, not only for metals but for currencies, stocks and the overall economy. These stories will be posted on Kitco.com during the holiday period and also will be featured in a special section. Stay tuned for video highlights as well.

(Kitco News) - China’s dominance of global rare earths output will continue in 2011, yet at the same time other nations are starting to make preparations to pull more metal from the ground and reduce China’s stranglehold on the market in future years.

Until the last few months, the mention of rare earth metals likely would elicit a blank stare unless the conversation involved someone in a specific sector that uses the elements.

Rare earth metals, known as REEs, burst into the mainstream media limelight during the past several months, with articles in The New York Times, The Wall Street Journal, the Financial Times, on major wire services and televised segments on CNBC. The big exposure came with a flap that developed when China, which controls 95% to 97% of the current REE global output, stopped exporting to the Japanese.

Fears continue over the supply of rare earth metals, which consist of 17 elements used in creating a variety of consumer, environmental and industrial-driven technological products. Despite some movement expected in 2011 and beyond to develop greater supply from other global sources, the Chinese still hold the shovel.

“They have the ability to dictate the market if they want to,” said Charl Malan, senior metals and mining analyst at Van Eck Global. The company offers a number of metals-related investments and this fall started the first U.S.-listed exchange-traded fund for equities of companies involved with producing, refining and recycling rare earth/strategic metals.

“With rare earths growth in the next five years about 225,000 tons, that’s about 9% (year-on-year) growth number,” Malan said. “Currently, supply is about 125,000 tons, out of which China produces about 120,000 tons.”

Major importers have come to depend on China due to its ability to manufacture REEs at a reasonable cost. The embargo China placed on exports to Japan has been devastating to the Japanese and shows the strength of the REE demand China commands. Japan was the leading importer of REEs.

“News out of China is a big part of it,” said The Mercenary Geologist Mickey Fulp. “It is a purely speculative sector. As news comes out of China about export quotas, relaxing export quotas or news of any kind on that regard supply and demand fundamentals of the rare earth elements sector is going to affect prices.”

Fulp said China controls well over 90% of the current supply. The dominance is mainly because the Chinese have developed the ability to manufacture these minerals in such a way that the rest of the world could be falling behind quickly, not because rare earth metals are really that rare.

“For me, if I look at the bigger picture for rare earths, this is what’s essential,” Malan of Van Eck said. “There’s an abundance of rare earths around the world. It’s not so much the mining, it’s the fact we don’t have the manufacturing capacity and we don’t have the skill sets or the equipment. That’s my biggest concern.”

Malan believes that China has invested its resources in such a way that it is now properly positioned for the future in terms of manufacturing capacity, but more importantly, well placed from a knowledge standpoint.

“To have the refined product really work, you obviously need very highly educated, highly skilled people specifically within an industry,” Malan said. “There’s something like 800 people with Ph.D.s specifically linked to rare earths. They don’t just focus on the equipment, the processing and the manufacturing side of it but also the manpower and the knowledge base behind it.”

A half century ago China was not among the leading producers of REEs. Between 1950 and 1980, the U.S., India, South Africa and Brazil were considered to be the front-runners in production. During the 1980s, China began underselling competitors, leading to consumers purchasing cheap supply from the Chinese.

This had a negative effect on REE mines in several countries, leading to most being shut down. Molycorp Minerals mine in California was once the largest REE producer in the world but was forced to close in 2002. The mine is set to reopen in 2011 and should begin contributing production by 2012.
“In 2012, there will be additional supply from Molycorp which will be 20,000 (metric) tons,” said Marino G. Pieterse, publisher and editor of Gold Letter International, Uranium Letter International and Rare Earths Elements International.
Molycorp is not the only rare earths company beginning REE production in the next few years.
“In 2013 you’ll have three other companies that will begin producing REEs,” Pieterse said. “Frontier Rare Earths will produce 10-20,000 (metric) tons, Greenland Minerals and Earths LTD will have 40,000 (metric) tons and then there’s Rare Elements Resources LTD, which will have 20,000 (metric) tons.”
Lynas Corporation in Australia is also slated to begin REE production, with tonnage reaching over 20,000.
Analysts said that the move towards wider production could mean there will be an over-supply of REEs by 2014-2015, which will bring stability to prices.
Despite the title of being rare, REEs are in abundance. With countries other than China developing the means to manufacture these metals coupled with the need to introduce and maintain greener technologies, REEs are expected to perform well in the coming years.
“I see bigger and better things for the entire sector,” Fulp said.
——
Scandium
Aluminum alloy: aerospace
Yttrium
Phosphors, ceramics, lasers
Lanthanum
Re-chargeable batteries
Cerium
Batteries, catalysts, glass polishing
Praseodymium
Magnets, glass colorant
Neodymium
Magnets, lasers, glass
Promethium
Nuclear batteries
Samarium
Magnets, lasers, lighting
Europium
TV color phosphors: red
Gadolinium
Superconductors, magnets
Terbium
Phosphors: green, fluorescent lights
Dysprosium
Magnets, lasers
Holmium
Lasers
Erbium
Lasers, vanadium steel
Thulium
X-ray source, ceramics
Yterrbium
Infrared lasers, high reactive glass
Lutetium
Catalyst, PET scanners

Tellurium Nerds Gold

Tellurium, used in both photovoltaic and thermoelectric technologies, has become a recent topic of debate in cleantech and materials science because of its rarity. With massive recent commodity price increases in rare earths and precious metals, I attempt to make some sense of the tellurium demand picture and whether we might expect a similar rush for the inconspicuous chalcogen element.

History

Tellurium (Te) is an element, number 52 on the periodic table, whose rarity on earth rivals only that of a handful of other elements, including gold. It is the namesake of the Telluride Film Festival and Telluride, Colorado, a mining town where gold telluride was thought to be found in the late 1800s.

The chart above shows the natural abundance of elements on Earth. For all practical purposes, this picture is static: it is the result only of world-formative events like the big bang and major asteroid impacts (despite any attempt at alchemy, black magic old or particle accelerator new). The fact that gold and tellurium have similar abundances on earth is merely a coincidence, but they are nonetheless found together in alloys of tellurium, or tellurides. Tellurides like calaverite were initially foolishly discarded during the first gold rush of 1849 and the subsequent discovery of gold in them spawned a second gold rush a few years later. Mining and metallurgy, an often high-tech profession at the time, was probably the only field that had tellurium in its vernacular.

Unlike tellurium, gold is the element of basilicas and twenty twos not because of its rarity, but because of its (anti) corrosive properties. Technically speaking, gold’€™s chemical reduction potential is positive, meaning it requires extra energy to become oxidized and therefore it never loses its luster while adorning our teeth and bathroom door handles. Tellurium, on the other hand, was not blessed with the pretty gene. Its current spot price on metals markets (~$200/kg, 200x cheaper than gold) reflects this.

Any engineer will tell you that looks aren’€™t everything. Tellurium, in the throws of its own fifteen minutes, has the potential to become similarly priced in the long term due to its increasing use in the highest tech applications. Tellurium has a rich history, if anything, having played a role in every stage of mining and materials science since 1849. During the space race, mining and metallurgy eventually became materials science, an interdisciplinary field of science and engineering incorporating physics and chemistry. With the discovery/invention of quantum mechanics in the 1910s and 20s, solid state physics was born and so was the modern notion of a semiconductor material. It would be thirty years before a semiconductor was applied to computation through microchips, and it would be silicon that proved ideal for this application. Initially, however, an alloy of tellurium, bismuth telluride, was the star of the solid state physics community for its fantastic Peltier, or thermoelectric, properties. A Soviet physicist who published much of the seminal work on solid state physics named Abram Ioffe believed that the commercial application of semiconductors would come in refrigeration through something known as the Peltier effect. The Peltier effect is when a semiconductor material pumps heat when electricity is made to flow through it. Any material that does this efficiently is called a thermoelectric.

Clearly, bismuth telluride and thermoelectric technology lost to the common compressor refrigerator, but one can nonetheless find these semiconductor coolers in a few places. If you have a quiet wine fridge in your living room, a climate controlled seat that cools you down in your Ford F150, or night vision goggles, then you’€™ll find a Peltier cooler inside.

Today tellurium is seeing its first real growth in use in a different application: solar cells. First Solar (FSLR), darling of all solar startups, uses a thin-film of cadmium telluride (CdTe, or €œcad-tell€) as one of the functional layers in its cells that helps collect sunlight. The company is increasing production quickly. Raw cadmium and tellurium demand is increasing and alas, tellurium could finally have its day. The question is whether Te, currently priced at ~$200/kg on the spot market and with the same supply constraints as gold, will ever have the type of demand that has gold currently trading two hundred times higher at ~$40,000/kg.

Production

Tellurium supply has historically never been much of a concern to anyone. Today tellurium is produced from the refining of copper in the same way gold is produced, as the byproduct of an electrolytic refining process that manifests itself in nasty resultant anode sludges. Tellurium is produced primarily by a Canadian company named 5N Plus which extracts it from these sludges. According to the US Geological Survey, 200 metric tonnes of tellurium were mined in 2009 worldwide and the world can sustain 1,600 metric tonnes of production per year maximum (but these estimations are hard to make accurately“ see Jack Lifton’s piece on tellurium supply here). In comparison, there were about 2,500 tonnes of gold mined in 2009, and 165,000 tonnes of gold have been mined, ever. Gold production peaked in 1999 at 2,600 tonnes. Let’s assume that tellurium could be produced at similar levels to gold going forward.

Gold demand currently comes from three areas: jewelry (~2,750 tonnes/year), reserve assets (~350 tonnes/year), and the electronics industry (~350 tonnes/year). Adding this up we get 3,450 tonnes/year demand, well over the amount produced. The difference is made up from both recycling of jewelry and the selling of reserve assets.

Gold, however, as an element that is also tied to the world economy through federal reserves and currencies, is not truly a commodity because its price is not generally close to its marginal cost of production. For that reason, let’€™s consider an element that might be slightly more similar to gold (Au) in that sense: platinum (Pt) or palladium (Pd). Both of these elements currently trade at $60,000/kg and $25,000/kg, respectively. The order of magnitude of these spot prices are the same as that of gold’€™s; while these elements tend to follow gold and are therefore somewhat subject to price swings that may not be concomitant with economic fundamentals, tellurium’€™s price can still be expected to rise significantly, albeit perhaps not quite by 200x, if demand for it was also >2,000 tonnes/year.

So how could tellurium demand increase by a factor of ten? Should First Solar be worried? Should producers of bismuth telluride thermoelectric devices be worried?

Tellurium Demand

First, let’€™s examine how much tellurium First Solar uses, and what this costs as a fraction of their total cost to produce a CdTe photovoltaic cell.

The density of CdTe is 5.8 g/cc. This gives 3.08 g/cc of Te in CdTe.

The efficiency of FSLR’€™s modules is ~11%. At a solar irradiance of ~1100 W/m^2, their cells will have a maximum power density of ~121 W/m^2.

At a CdTe film thickness of 3 µm, and at a 2.7 GW target production in 2012, they will be using roughly 71 m^3 of tellurium per year in the cells alone.

This would mean using 218 metric tonnes of tellurium per year in their cells. As described earlier, global production is currently estimated at 200 metric tonnes/year and could go as high as 2,500 if we do a straight comparison to gold.

This means FSLR would have to be producing somewhere near 27 GW per year of solar panels to ever be truly supply constrained by tellurium. Considering 20 GW of new power plants were built in the US in 2009, and that 550 GW of new capacity is expected to be installed in China between 2010 and 2020, 27 GW of PV production per year is somewhat plausible many years out and by no means likely.

To understand whether First Solar is shielded from volatility in the price of tellurium, let’€™s look at what the cost of tellurium is within their cells. From our analysis above it takes 80 metric tonnes of tellurium to manufacture a gigawatt of cell, assuming FSLR’€™s CdTe deposition is 100% efficient in that no tellurium is wasted or lost (not the case, but we’€™ll stick with this assumption). At $200/kg, 80 metric tonnes costs $16 million, or 1.6¢/Watt. At an overall production cost of $1.00/Watt, the price of tellurium would have to increase by at least 10x before FSLR would feel significant pain. It is safe to say that they are not going to affect the tellurium market nor be sensitive to much volatility in it with business as usual.

Now let’€™s look at thermoelectrics and their application for something converse to refrigeration: power generation. Bismuth telluride and a similar alloy, lead telluride, have been studied for a long time for their ability to generate electricity from an applied temperature gradient such as a waste heat source. The automotive industry, in particular, has big plans to incorporate thermoelectric waste heat recovery technology into engine tailpipes to turn wasted heat in exhaust back into electricity. These systems require roughly 1 kg of bismuth or lead telluride per car typically, roughly half of which is tellurium.

Will adoption of automotive thermoelectric generators cause a tellurium shortage? About 60 million motor vehicles were produced in 2009, only a tiny fraction of them not with an internal combustion engine. If each had a thermoelectric generator on them with 0.5 kg of tellurium within, over 30,000 metric tonnes of tellurium would be required per year€“ over 10x more production than what is thought to be possible, and over 100x more than what is currently produced annually. Modestly, if only 7 million cars per year had thermoelectric generators (all of GM’€™s and BMW’€™s autos, for instance) we would expect tellurium demand to be 3,500 metric tonnes/year. Even if we assume this tellurium usage could come down by a factor of ten through going to more power dense configurations and by using thin film materials, the long term picture is still bleak. Surely a problem for anyone expecting to scale this technology€“ and for FSLR for that matter! (Note FSLR’€™s relationship with the largest tellurium supplier 5N Plus.)

More importantly, however, is that it currently costs $100 for just the tellurium in an automotive thermoelectric waste heat recovery generator, and these systems typically produce no more than 500 W of power. In the low margin automotive industry, $0.20/Watt will never cut it; the question of whether the automotive industry will ever impose a tellurium shortage practically moot.

Gold, platinum, palladium, and rare earth elements have all seen their values skyrocket in recent months. While there is nothing immediately suggesting tellurium will follow suit, it will surely be an interesting metal to follow over the next decade – and an analysis like this hopefully helps guide technologists away from the use of telluride materials in all but the niche-est of applications.

Matthew L. Scullin is CEO of Alphabet Energy, Inc., a producer of thermoelectric materials that use no tellurium. This article was previously published on his Scullin blog.