Rare Metals Guy

Critical Metals Vital to Our Lives in Tight Supply

We begin 2012 similar to how we started 2011 when it comes to rare earth, rare technical metals and rare industrial metals. China has over 90% of production and refining. The US and EU governments are scrambling to legislate, source, produce, open and reopen mines. The West has decided to continue down the road of the idea that the markets will take care of the supply and price of these metals. What is alarming is how easily the West was lulled to sleep by China´s ability to supply the world its metals cheaply and efficiently. The West concentrated on making money trading stocks and futures that dealt with these commodities. China concentrated on building the most extensive mining industry in the history of man. Here in 2012 the Department of Energy in the USA has approved a spending bill that includes $20 Million to focus on the supply issues of these metals.

The metals I am speaking about are so vital to our everyday lives. These metals are found in your mobile phones, computers, LCD and LED TV´s, hybrid cars, solar power, wind power, nuclear power, efficient lighting and medical technologies. Here is a list of metals that have been deemed critical.

  • Indium RIM (Solar, Mobile Phones, LCD)
  • Tellurium RIM (Solar, Computers, Semi-conductors)
  • Gallium RIM (Solar, Mobile Phones, LED´s, Fuel Cells)
  • Hafnium RIM (Processors, Nuclear, Lighting, Plasma Cutting Tools)
  • Tantalum RIM (Capacitors, Medical Implants, Mobile Phones, Nuclear)
  • Tungsten RIM (Nuclear, Armaments, Aviation)
  • Yttrium REE (Lighting, Medical Technology, Magnets in Hybrids)
  • Neodymium REE (Magnets in Wind power, Super Magnets, Hybrid Vehicles)
  • Dysprosium REE (Computers, Nuclear, Hybrid Vehicles)
  • Europium REE (Lighting, LED´s, Lasers
  • Lanthanum REE (Hybrid Vehicles, Magnets, Optics)
  • Cerium REE (LED´s, Catalytic Converters, Magnets)

RIM=Rare Industrial Metal REE=Rare Earth Element

The supplies of these metals could hold back the production of green technologies. According to the latest report by the Department of Energy, ¨Supply challenges for five rare earth metals may affect clean energy technology deployment in the years ahead¨. If Green technology is to become main stream, the costs of these technologies have to reach cost parity with traditional energy sources. As long as there are serious supply issues with these metals the costs can´t reach these levels. The other option is finding alternatives like Graphene and Nanotechnologies.

The US and EU need supply chains of the metals that include both mining and refining of these metals. Relying on sovereign states for critical metals such as these, leave a nation vulnerable to outside influence in both politics and economics. Environmentalists have succeeded in influencing politicians to close mines throughout the West. Politicians have legislated the mining industry into the position it is in today. The Western nations must start now to build its supply chain or continue to be at the mercy of the BRIC (Brazil, Russia, India and China) nations for its metal needs.

The best the West can do now is provide, enough metals to meet its own demands. China has reached a point where it can now demand that certain industries produce their products there. If a company decides to try to produce the product in another country China will make producing that item cost prohibitive outside of China by raising the prices of the metals.

The demand for the products these metals are used to produce, are showing few signs of slowing down even in a so-called recession. Governments are subsidizing Green technology, people are buying mobile phones across the planet and everybody wants a nice flat screen TV. Will 2012 pass without countries truly taking this opportunity to fix the problem or will they step up and make the hard decisions which can put the countries back in control over their own destiny?

By: Randy Hilarski - The Rare Metals Guy

China, 14 Currency Swap Agreements and Counting

Since the financial crisis of 2008 China has been signing agreement after agreement with other sovereign nations for bilateral currency swaps. China and these other nations are trying to diversify their central bank foreign - exchange reserves out of U.S. Dollars. China would like its currency, the Renmimbi, to play more of an important role in the world financial system. Here is a list of the fourteen nations that have already signed bilateral currency swap agreements with China.

  • Pakistan
  • Argentina
  • South Korea
  • Indonesia
  • New Zealand
  • Malaysia
  • Belarus
  • Hong Kong
  • Japan
  • Uzbekistan
  • Thailand
  • Turkey
  • Singapore
  • Kazakhstan

After the collapse in 2008 Chinese exporters were finding it difficult to do international trade as they were unable to settle their deals with Yuan (Renmimbi) and were forced to settle in Dollars. The currency swap agreements will make it easier for now for international companies and traders to receive financing in Yuan during difficult economic periods. If they can settle their deals in Yuan (Renmimbi) it would reduce their risk. China and these nations would like to keep trade flowing even in the event of another financial crisis.

What is a Currency Swap? Essentially a currency swap is a transaction between two nations to exchange the interest and principal payments on loans issued by two different nations. The two countries gain access to foreign exchange reserves. This limits the nations exposure to exchange rate fluctuations because they can pay back the liability associated with its currency instead of in Dollars.

Why is China so concerned about the U.S. Dollar? China has grown suspicious of the US government unwillingness to curb its spending and printing of its currency. This runaway printing has and will continue to devalue it dollar-denominated assets. Recently we are hearing that the US Federal Reserve will quietly implement QE3 (Quantitative Easing 3).

China would like the world to look upon its currency as a store of value similar to Gold and the Dollar. This privilege has given the US the ability to expand and borrow. China would also like this ability. If nations hold reserves in Yuan (Renmimbi) it is extending credit to the Chinese government. These currency swaps are the first steps in Yuan (Renmimbi) transforming in to a global currency. How many more countries will sign agreements with China in 2012? How will the USA and the IMF react? I look forward to seeing the results of China spreading its influence.

Randy Hilarski - The Rare Metals Rare Earth and Rare Industrial Metals Specialist
Web: www.swissmetalassets.com

Why Buy and Store Metals Offshore

Offshore Storage Facilities for Rare Earth and Industrial Metals

Today more than ever it is important for a person to diversify the location of their assets. If you are one of my readers there is a good chance that you believe in Precious and Rare Metals as a form of protection against inflation, and governmental shenanigans. Metals give a person piece of mind like very few other investments can.

Some of the benefits of Metals include.
  1. Paper assets can depreciate to zero, Metals will not.
  2. Metals are a hard asset that can be handled, free of third party interference.
  3. Metals are a store of value.
  4. Metals are both a form of money and used in industry.
  5. Metals are highly liquid.

Why take your metals offshore? Inflation according to the US government is running close to 3% and banks are paying a paltry 1-2% for interest. People are increasingly worried about government seizure of their paper assets and hard assets. Recently Portugal decided to take over its pension funds until the financial crisis passes. As we know once a government takes over something they rarely give it back. How long do you think until nations like the USA, UK, Germany, Canada and Australia start invading their pension funds? In 1933 the US government under the leadership of Franklin D. Roosevelt required US citizens to turn their Gold in for currency. Do you think that the governments of today are any less bold?

The four main benefits of offshore investing include.
  1. Asset Protection
  2. Confidentiality
  3. Tax Sheltering
  4. Diversification

There are many different ways a person can buy and store metals internationally. A client could buy and store in their personal name. They could store their metals in an offshore IRA. They could purchase their metals through a company that they control. They could use a Trust or an offshore structure that they control. This opens up a wide range of opportunities for the savvy metals buyer.

In the spring of 2012 we are tentatively scheduled to open our latest storage facility in Panama. We have had many clients asking us if we knew of an option for them to store their metals closer to home. Our waiting list of clients looking to take advantage of this opportunity continues to grow. It will be located in the Panama Pacifico Free Zone which is the old Howard Air Force Base in the Canal Zone. Currently we have our facility in Zurich, Switzerland in the Swiss Free Zone. If you would like more information to buy Metals or to be added to our Panama storage wait list please feel free to contact myself or the team at Swiss Metal Assets.

Customers ask, How would I transport the Metals to Panama? Brinks is the logical choice for me. They offer door to door service for the client. You can learn more on their website.

The financial situations are getting more and more complicated for nations throughout the world. Don´t you think it is time that you protected your assets?

By: Randy Hilarski - The Rare Metals Guy

Rare Earth Elements are not the same as Rare Industrial Metals

Randy Hilarski has also released a video on this article that can be watched by clicking here.

I read articles from other writers who often refer to Rare Industrial or Technical Metals as Rare Earth elements. I would like to take some time and clear up the issue. I deal with RIM’s and REE´s on a daily basis. The two might both be considered metals but that is where the similarities end.

First we have REE´s or Rare Earth Elements. These metals consist of 17 metals, the Lanthanides plus Scandium and Yttrium on the periodic table of the elements. These metals are in a powder form, making them difficult to assay and store. One important factor that is often mentioned is that they are not rare. This is very true, but finding REE´s in large deposits is difficult.

In the mining sector REE mines are standalone mines, that focus on the mining and refining of REE´s exclusively. Currently around 97% of all REE´s are mined and refined in China. Historically REE mining and refining has been a dirty business, which has affected the environment around the mines. The elements Thorium and Uranium are often found along with the REE´s in the deposits causing the slurry to be slightly radioactive when processed. The use of highly toxic acids during the processing can also have serious environmental impact. Many companies are trying to open REE mines but they are meeting headwinds, as nations and people do not want these mines in their backyard.

Over the last few years China has dramatically cut its export of REE´s. This and the increased need for REE´s have caused a meteoric rise in the value of these metals. The one area that very few people talk about is the role of the media combined with speculators in raising the value of REE ETF´s in particular. For the last couple years REE´s were the rock stars of the metals. The news has calmed as of late, but the supply and demand factors that caused the metals to soar are still in place. Recently China closed it BaoTao mine until REE prices stabilize.

Rare Industrial Metals, RIM´s or Technical metals are another group entirely. The RIM´s are made up of metals used in over 80% of all products we use on a daily basis. Without these metals you would not have the world of the 21st century with our mobile phones, hybrid cars, flat screen TV´s, highly efficient solar energy and computers. Some of these metals include Indium, Tellurium, Gallium, Tantalum and Hafnium. These metals really are rare compared to the Rare Earth Metals which causes a great deal of confusion. These metals are in a metallic form, stable and easy to store and ship.

RIM´s are mined as a by-product of base or common metal mining. For example Tellurium is a by-product of Copper mining and Gallium is a by-product of Aluminum and Zinc mining. The mining of the RIM´s currently are for the most part at the mercy of the markets for the base or common metal mining. If the Copper mines of the world decide to cut production due to Copper losing value, this will have a huge impact on the amount of Tellurium that can be refined. Up until now, because of the previous small size of the RIM market, many companies do not feel the need to invest money into better technology to mine and refine these metals. The RIM´s would have to be valued much higher to gain the attention of the mining industry.

When China cut exports of REE´s they also cut exports of RIM´s. This put pressure on the value of these metals. RIM´s have increased in value, but nowhere near the meteoric rise of the REE´s. Most of the metals increased in value around 47% in 2010 and 25% so far in 2011. There is still a lot of room for growth in the value of these metals (not based on speculation like REE´s) as demand is exceeding supply now and in the future.

For Example, when REE´s and the stock market recently fell sharply the RIM´s came down slightly in value but have held their own extremely well. On a further note, according to Knut Andersen of Swiss Metal Assets, ¨Even though prices of the Rare Industrial Metals continue to go up in value, consumers will eventually only see a very small increase in the price of the end products, because there is so little of each metal used to produce these products. Also if the people can´t afford a smartphone they will still buy less expensive phones that still use the same Rare Industrial Metals¨.

The need for RIM´s has risen sharply over the years and will continue to grow at astronomical rates. China, India, South America and the whole of Africa with hundreds of millions of new consumers are now buying and using computers and mobile phones to name just a few products.

The future is bright for the technologies and the Rare Industrial Metals that make them work and for anyone who participates in stockpiling these metals now to meet future increased demand.

By: Randy Hilarski - The Rare Metals Guy

China Now Controls the Solar Industry

Recently American solar companies like Solyndra, Evergreen Solar and Spectrawatt have filed for bankruptcy. These events may lead investors to believe that Solar is finished.

The US solar industry was hit hard by announcements out of Europe that some nations, like Italy, were scaling back their expenditures on solar due to their debt crisis. At the same time we have nations like India announcing a US $19 billion plan to produce 20GW of solar power by the year 2020.

Where will the solar panels for this market be manufactured?

India does not have sufficient rare industrial metal inventories or rare earth metal production to meet the demands of the government plan.

China has positioned itself as the country with 97% control over the majority of rare industrial metals and rare earth metals needed to produce high efficiency solar panels.

What does this mean for companies producing solar panels?

Among many other reasons for restricting exports of rare metals, China wants companies to produce the products in China to keep its workforce employed. If companies want to import metals from China in to produce the panels in other nations they will have to pay much higher prices for the metals due to taxes, shipping, export costs and other import costs. Accordingly, The US manufacturers will have a difficult time competing with the manufacturers in China.

The other issue that the companies do not want to talk about is government subsidies and tax breaks. Jason Burack the co-author of the, ¨Dragon Metals Report¨, and owner of www.wallstformainst.com recently said, ¨Message to all CEOs in solar, “Switch immediately to the best Solar panel technology using materials like rare earths, rare industrial metals and graphene and stop relying on the government for subsidies to produce inferior technology panels the market does not want, also a successful long term business model for any company should not be to rely on getting all of your revenue and contracts from the government, which is what many solar companies have done¨.

There are three, ¨Thin-Film PV¨ kinds of solar panels.

1. CdTe or Cadmium Telluride with an efficiency of 6%-11%.

2. a-Si or Amorphous Silicon with an efficiency of 6%-12%

3. CIGS or Copper Indium Gallium Selenide with an efficiency of 10%-20%

CIGS Advantages:

A. Highest energy yield

B. No environmentally hazardous materials

C. You can mold the panels to fit many applications

D. They can possibly bring the cost of solar energy panels down to below $1 per watt.

 The other technology on the horizon is graphene composite solar panels. They are made of copper, molybdenum and graphite. Molybdenum and graphite have both been deemed highly critical to national security for many nations. Once again China has a powerful position because they control over 80% of the graphite market. So once again China has the foresight to see the technologies on the horizon and has positioned itself to prosper.

Currently 89% of the total installed solar panels worldwide are located in Germany, Japan and the USA. In the coming years we will see a growing demand from China for its own solar needs. Between China and India the demand for solar panels will far exceed our current ability to produce the panels. The costs of solar are coming down and the closer we are to grid parity, the more use of solar we will see. Since many of the metals used to produce these panels have been deemed critical to many nations national security, the prices of these metals are bound to stay elevated. China has shown that it will continue to restrict the exports of the rare industrial and rare earth metals further tightening the supply chains.

By: Randy Hilarski - The Rare Metals Guy

Chromium, are Nations Hoarding Natural Resources?

Chromium is a topic that you rarely hear about, but in today´s environment of uncertainty and the, ¨Great Worldwide Resource Grab¨, chromium gets more attention. Recently we have the EU and USA going into Libya (oil, lithium), Iraq (oil), Afghanistan (oil pipeline, rare earths), West Africa (cobalt, tungsten, oil, gold, timber and many more). Let us not forget China and the contracts that they are signing all over the world for their natural resource needs. This all makes for some very interesting times for nations and investors alike. Rare industrial metals are no different. Chromium has been in the news so it is time to explain its uses and background.

Chromium was discovered by Louis Vauqelin in 1797. Chromium is a blue-white metal with great corrosion resistance. It has the symbol Cr with an atomic number of 24. Chromium can be polished to form a very shiny surface and is used to plate other metals to form a protective layer.

The main use of chromium is in the production of steel where it is used as a hardener, corrosion resister and helps fight decolorization. Iron and chromium form Stainless Steel which is strong and has a high resistance to heat and decomposition. The two form one of the most versatile and durable metals known in the world. Stainless steel contains approximately 10% chromium. Chromium is also used in paints, coloring in glass, and as a plating agent.

According to the USGS the top producers are South Africa, Kazakhstan and India. South Africa produces almost 50% of all chrome ore. The three countries account for 80% of all chrome ore mined. Approximately 95% of all known reserves are located in Kazakhstan and the southern tip of Africa to include Zimbabwe and South Africa.

The background of chromium is interesting, but today we have a hot topic. India is thinking about a ban on exportation of chrome ore. This is after news out of South Africa that the, ¨National Union of Mineworkers¨, called for restrictions of chrome ore exports to China. It has been speculated that China has been stockpiling chrome ore in order to control future prices. Does this sound familiar? We currently have to deal with the manipulation of the rare earths and rare industrial metals by China. As of October 2011 India and South Africa have not followed through with the plans. The next few weeks and months will be quite interesting, we are seeing an increase in the need for chromium, with a possible decrease in available supply.

Today our world is full of uncertainty. Every day brings us news of something amazing. Governments are under pressure, people are suffering, companies are folding, wonderful inventions, worldwide internet connectivity, and resources are becoming scarce. I have learned that in times like this you can either complain or build a grand future. Many fortunes were made during the US Great Depression. We are living through a worldwide recession, when we come out on the other side natural resources will be needed like never before. Where are you putting your money and future?

By: Randy Hilarski - The Rare Metals Guy

Hafnium the Little Known Element with Huge Potential

The metal that is starting to get a great deal of attention from the military industrial complex was already well known in the nuclear industry and in the semiconductor industry. This metal is hafnium. Hafnium was discovered in 1923 by a Danish chemist named Dirk Coster and Georg Karl von Hevesey in Copenhagen. Its symbol on the periodic table is Hf and its atomic number is 72. Hafnium is considered a transition metal and is found as an impurity in Zircon ore deposits. The percentage in Zircon ore deposits is about 15%. The producers of Hafnium are Australia 42%, South Africa 32%, China 11% and a few other nations with smaller amounts.

Hafnium in semiconductors is an emerging use. A few years ago Hafnium replaced some uses of silicon in the semiconductor industry. Hafnium has increased the speed of the microprocessors, decreased the size, and made them more efficient. These chips have lowered energy leakage by 20%. ¨Silicon valley¨ has now become ¨Hafnium Valley¨.

In aviation, hafnium is used in super alloys. Due to it being an excellent refractory metal hafnium has applications where heat resistance is needed. It is used in the, ¨exhaust end¨, of jet engines. The melting point is 2233° C or 4,051° F.

The one area that may see a large increase of use is in the nuclear industry. The control rods which capture the neutrons released from nuclear fission are made of hafnium. The future for nuclear still looks bright even after the accidents in Japan. According to the, ¨Nuclear Engineering Handbook¨ there are 439 plants in operation with over 320 more proposed for the future. To be fair there are some substitutes like the silver, cadmium and indium control rods now available.

In the news recently we have heard about the military industrial complex and their interests in hafnium. One gram of hafnium contains as much energy as 700 pounds of TNT. According to the, ¨New Scientist¨ magazine the US military is developing technologies to use hafnium in its future bombs. The technology is said to produce bombs capable of releasing energy thousands of times greater than conventional weapons. Dr. Bill Herrmannsfeldt of Stanford University is not convinced. The Dr. does not believe that the military should be investing money in technologies that have no scientific basis. As a precaution the Dr. is asking for an independent review of the technology to see if it is scientifically possible.

Worldwide production of hafnium according to the USGS is unknown but we can make a good estimation because we know that hafnium is a byproduct of zirconium mining. Hafnium is a 15% impurity in Zircon ore. The USGS states that 1200t of zirconium are mined per year this would give us approximately 180t of hafnium. Official production is said to be 70t annually. This is a very small amount compared to many other elements and because there is very little information about the amounts of production it makes it difficult to have exact figures.

Unlike many rare industrial metals hafnium is not primarily controlled by China. Australia is the world´s largest producer. The production of hafnium is expected to increase approximately 4-4.5% annually. Hafnium has increased in value tremendously over the years. For over 30 years it consistently could be purchased in the vicinity of $200,000 per ton, now we have prices approaching $1,000,000 a ton. That is quite an increase. Inflation or demand, either way hafnium is performing very well for the producers and investors of the metal.

By: Randy Hilarski - The Rare Metals Guy

Cobalt a Critical Rare Industrial Metal Vital to U.S. Energy Policy

Cobalt was discovered around 1736 by Georg Brandt a Swedish chemist. The element was found to give glass a hint of blue. For centuries cobalt has been used as a pigment in glass and porcelain. Chinese artisans used it to color their vases and other ceramics. Over the last few decades cobalt has had a grand resurgence. In the late 1970′s Zaire, now Democratic Republic of Congo had a bloody civil war which cut off the world from much of the production of cobalt. During this time alternatives had to be found because the price of the rare industrial metal accelerated beyond what industry was willing to pay. Since then the amount of uses for Cobalt have expanded to the point where the US Department of Energy added cobalt to its, “Critical Materials”, list.

This metal has found its way into many of our technological applications used today. Cobalt’s uses include aerospace, green tech, pigments, dyes, batteries, wireless technology, computers, magnets, desulfurization of crude oil, orthopedic implants and high-strength superalloys. The use of cobalt in superalloys is mainly due to its corrosion resistance, temperature stability, and wear resistance. These attributes make it highly suitable to aircraft engines and gas turbines. The US Department of Energy predicts that electric powered vehicles (PHEVs and EVs) will need an estimated 9.4 kg each of cobalt. By 2012 the estimated sales of hybrid and electric vehicles worldwide is approximately 2.2 Million, and by 2015 to be at least 10% of the world auto market. Wind energy also uses large amounts of cobalt within its turbine blades and samarium-cobalt magnets.

The US Department of Energy has made it clear that any rare industrial metal used in clean energy technology such as electric vehicles, solar cells, wind turbines and energy efficient lighting will be deemed critical. The problem for the USA lies in its supply of cobalt. Still today over 40% of global production is from The Democratic Republic of Congo. China has an agreement with the DRC to export all of the cobalt to China where it is refined. Once again China has a stranglehold on rare industrial metals similar to what is happening in the rare earth market. The big difference is with rare industrial metals it is much more difficult to expand supply. There are very few known deposits of cobalt, most production is a by-product of copper production. The USA has been recycling 15% of its cobalt and importing 85% from foreign sources. The bad news for the USA is that China needs cobalt as well. Currently the USA has only one mine that is being prepped for production in Idaho. This mine will primarily produce cobalt totaling 3% of the global supply. The main players in cobalt refining are China, Finland and Canada. According to the USGS in 2010 the total world production of cobalt was around 88,000t.

If a person is looking for a way to profit from cobalt there are a few options. A person could buy stocks of mining companies that have rights to cobalt mines, which is the traditional method. Recently the London Metals Exchange (LME) launched a cobalt contract traded in 1 metric ton lots of 99.3% pure cobalt. The other option is buying cobalt in Germany and having it stored 100% allocated in Switzerland. A company that offers the option of buying cobalt in smaller quantities is Swiss Metal Assets. Although cobalt is only one of the various rare industrial metals they offer.

By: Randy Hilarski - The Rare Metals Guy
Source: http://www.buyrareearthmetalschinaprices.com

Tellurium, is there enough?

Tellurium (te-LOOR-i-em) is an element discovered by Franz Joseph Muller Von Reichenstein, a Romanian mining official in 1782. His work was forgotten until 1798 when a German Chemist Martin Heinrich Klaproth named the new element Tellurium and gave all credit for it discovery to Reichenstein.

Tellurium is element number 52 on the periodic table it is a semi-metallic, crystalline and brittle. It is usually found as a dark gray powder. Be wary when handling this element it can give a person a foul smell for a considerable amount of time.

The main supply source of tellurium is as a by-product of copper mining, approximately 90%. It is the rarest of all the by-product metals, with the exception of Gold. The amount of tellurium in the earth’s crust is about .005 ppm. There are estimates of 150-500 t annually produced. The amount produced is very difficult to verify. For example the USA, Australia, Belgium, China, Germany, Kazakhstan, Phillipines and Russia do not report how much they mine or recycle each year for national security reasons. According to the US National Renewable Energy Laboratory (NREL) the maximum possible annual production would be no more than 1,600 t per year. The global market for tellurium is miniscule compared to the copper market in turn this gives little incentive to the mining companies to invest in better, more efficient ways of extracting it.

The uses of tellurium include alloying component, semi-conductors, photo-diodes, solar cells, blasting caps, optical storage (CD-RW), computer memory (RAM), pyrotechnics, glass, ceramic paints and thermoelectric cooling devices. The largest use is as an alloying component to steel, aluminum, copper, tin and lead. It is used to improve the machinability of steel and copper.

The most exciting use of tellurium is in photovoltaic cells made from thin films of cadmium telluride. These solar panels are cheaper in cost per watt of electricity generating capacity than the traditional silicon panels. The firms making these solar panels will need approximately 80-100 t of tellurium per gigawatt of photovoltaic cell production. As stated earlier the annual production estimate is 150-500t. That means that the solar industry itself could use up most of the world’s production of tellurium in the coming years. There is serious debate as to whether the amount of global supply can meet the need of the solar industry.

For example in July 2009, India unveiled a US$19 billion plan to produce 20 GW of solar power by 2020. Under the plan, the use of solar-powered equipment and applications would be made compulsory in all government buildings, as well as hospitals and hotels. It has been said that this initiative alone will use up all the world’s production of solar cells.

In 2004 you could purchase tellurium for $10 per kg. Then the solar industry came along and disrupted the market. In August 2011 the price is hovering around $360 per kg. I find this to be an exciting moment in history. We are seeing commodity prices rise all around us. The population of the world is exploding. The Chinese are tightening their grips on their supplies of rare technical and rare earth metals.

There is a need for cleantech like never before and here we have an element in very tight supply. The next few years are going to be a very interesting time in the commodities market. I look forward to seeing where tellurium goes from here.

Source: www.buyrareearthmetalschinaprices.com
By: Randy Hilarski - The Rare Metals Guy