tellurium

Critical Metals Vital to Our Lives in Tight Supply

We begin 2012 similar to how we started 2011 when it comes to rare earth, rare technical metals and rare industrial metals. China has over 90% of production and refining. The US and EU governments are scrambling to legislate, source, produce, open and reopen mines. The West has decided to continue down the road of the idea that the markets will take care of the supply and price of these metals. What is alarming is how easily the West was lulled to sleep by China´s ability to supply the world its metals cheaply and efficiently. The West concentrated on making money trading stocks and futures that dealt with these commodities. China concentrated on building the most extensive mining industry in the history of man. Here in 2012 the Department of Energy in the USA has approved a spending bill that includes $20 Million to focus on the supply issues of these metals.

The metals I am speaking about are so vital to our everyday lives. These metals are found in your mobile phones, computers, LCD and LED TV´s, hybrid cars, solar power, wind power, nuclear power, efficient lighting and medical technologies. Here is a list of metals that have been deemed critical.

  • Indium RIM (Solar, Mobile Phones, LCD)
  • Tellurium RIM (Solar, Computers, Semi-conductors)
  • Gallium RIM (Solar, Mobile Phones, LED´s, Fuel Cells)
  • Hafnium RIM (Processors, Nuclear, Lighting, Plasma Cutting Tools)
  • Tantalum RIM (Capacitors, Medical Implants, Mobile Phones, Nuclear)
  • Tungsten RIM (Nuclear, Armaments, Aviation)
  • Yttrium REE (Lighting, Medical Technology, Magnets in Hybrids)
  • Neodymium REE (Magnets in Wind power, Super Magnets, Hybrid Vehicles)
  • Dysprosium REE (Computers, Nuclear, Hybrid Vehicles)
  • Europium REE (Lighting, LED´s, Lasers
  • Lanthanum REE (Hybrid Vehicles, Magnets, Optics)
  • Cerium REE (LED´s, Catalytic Converters, Magnets)

RIM=Rare Industrial Metal REE=Rare Earth Element

The supplies of these metals could hold back the production of green technologies. According to the latest report by the Department of Energy, ¨Supply challenges for five rare earth metals may affect clean energy technology deployment in the years ahead¨. If Green technology is to become main stream, the costs of these technologies have to reach cost parity with traditional energy sources. As long as there are serious supply issues with these metals the costs can´t reach these levels. The other option is finding alternatives like Graphene and Nanotechnologies.

The US and EU need supply chains of the metals that include both mining and refining of these metals. Relying on sovereign states for critical metals such as these, leave a nation vulnerable to outside influence in both politics and economics. Environmentalists have succeeded in influencing politicians to close mines throughout the West. Politicians have legislated the mining industry into the position it is in today. The Western nations must start now to build its supply chain or continue to be at the mercy of the BRIC (Brazil, Russia, India and China) nations for its metal needs.

The best the West can do now is provide, enough metals to meet its own demands. China has reached a point where it can now demand that certain industries produce their products there. If a company decides to try to produce the product in another country China will make producing that item cost prohibitive outside of China by raising the prices of the metals.

The demand for the products these metals are used to produce, are showing few signs of slowing down even in a so-called recession. Governments are subsidizing Green technology, people are buying mobile phones across the planet and everybody wants a nice flat screen TV. Will 2012 pass without countries truly taking this opportunity to fix the problem or will they step up and make the hard decisions which can put the countries back in control over their own destiny?

By: Randy Hilarski - The Rare Metals Guy

Electric cars to be hit by supply disruptions

The advancement of electric cars in the short-term could be affected by supply disruptions.

That’s the verdict of a new report from the US Department of Energy entitled 2011 Critical Materials Strategy, which looks at supply challenges for five rare earth metals – dysprosium, neodymium, europium, terbium and yttrium. These metals are used in magnets for wind turbines and electric vehicles or phosphors in energy efficient lighting. Meanwhile, other elements, including indium, lanthanum, cerium and tellurium, were found to be near critical.

According to the report, demand for almost all of the materials has grown more rapidly than demand for commodity metals such as steel – this has come from consumer products including mobile phones, computers and flat panel televisions, as well as clean energy technologies.

However, the report concludes that manufacturers of wind power and electric vehicle technologies are already looking into strategies to respond to potential shortages. It states that manufacturers are currently making decisions on future system designs, trading off performance benefits of elements such as neodymium and dysprosium against potential supply shortages.

As an example, wind turbine manufacturers are looking at gear-driven, hybrid and direct drive systems with varying levels of rare earth metal content while some electric vehicle manufacturers are pursuing rare earth free induction motors or using switched reluctance motors as an alternative to PM motors.

By: Paul Lucas
Source: http://www.thegreencarwebsite.co.uk/blog/index.php/2011/12/27/electric-cars-to-be-hit-by-supply-disruptions/

Supply Threats Persist For Thin-Film Solar Materials Due To Competition

One year ago, a report from the U.S. Department of Energy (DOE) on the global supply of essential PV module materials predicted possible disruptions for thin-film manufacturing.

The availability of indium, gallium and tellurium was examined in the context of current and future production needs, and the DOE found cause for concern. Indium and tellurium were pegged as especially vulnerable to supply tightness and price volatility, according to both the report and several market analysts at the time.

(See “New Government Report Identifies Supply Risks For Thin-Film PV Materials” in the February 2011 issue of Solar Industry.)

Now, the DOE has released the latest edition of its Critical Materials Strategy. Have the worries over thin-film PV materials supply eased? According to the DOE, the general supply-demand picture for indium, gallium and tellurium has “improved slightly,” but the situation is not entirely reassuring. The three metals are still highlighted (alongside neodymium and dysprosium) as clean-energy materials that face a “significant risk of supply chain bottlenecks in the next two decades.”

The report attributes the slight improvement primarily to decreased demand for the three thin-film materials: Although PV deployment is expected to grow, the requirements of the materials per module are expected to shrink.

For copper indium gallium diselenide (CIGS) modules, manufacturers are shifting to compositions with higher proportions of gallium and lower concentrations of indium, the DOE says. The result is a “partial trade-off in the potential for supply risk between the two elements.” At the same time, CIGS’ market share assumption has been reduced under the DOE’s new calculations, lowering projected demand for both indium and gallium.

Cadmium telluride (CdTe) thin-film modules currently account for approximately 10% of the PV market, according to the report. Declining silicon prices may threaten this slice of the market, but high tellurium costs and the increasing need for CdTe manufacturers to compete for supply with non-PV companies requiring tellurium continue to cause supply headaches.

“The cost of tellurium is a critical issue for CdTe solar cell makers, and the industry is working to lower material use and increasing recovery of new scrap to reduce reliance on primary tellurium,” the DOE says in the report.

Although short-term supply of tellurium appears adequate, future capacity increases may be insufficient to supply both CdTe manufacturing and the multitude of other manufacturing sectors that use tellurium. Under one scenario modeled in the report, tellurium supply would need to increase 50% more than its projected 2015 total in order to meet expected demand.

Indium and gallium have also experienced increased popularity in non-PV manufacturing uses, such as semiconductor applications, flat-panel displays, and coatings for smartphones and tablet computers. The DOE forecasts that as a result, supplies may run short by 2015 unless production of these materials is increased - or non-PV demand lessens.

Of the two metals, gallium poses more cause for concern, as the DOE has adjusted its assumptions of future gallium use under CIGS manufacturers’ expected manufacturing modifications.

“These higher estimates [of gallium requirements] are driven largely by the assumption that gallium will increasingly be substituted for indium in CIGS composition,” the DOE explains. This change points to the benefits of reducing material intensity in other aspects of PV manufacturing, such as reducing cell thickness and improving processing efficiency.

Overall, indium, gallium and tellurium all receive moderate scores (2 or 3 on a scale of 1 to 4) from the DOE with regard to both their importance to clean energy and short- and medium-term supply risk.

In order to help mitigate possible supply disruptions that could threaten the manufacturing and deployment of PV, as well as other types of clean energy, the agency has developed a three-pronged approach.

“First, diversified global supply chains are essential,” the DOE stresses in the report. “To manage supply risk, multiple sources of materials are required. This means taking steps to facilitate extraction, processing and manufacturing here in the United States, as well as encouraging other nations to expedite alternative supplies.”

The second strategy relies on developing alternatives to materials whose supply may be constrained. For PV, one DOE research program focuses on advancements in thin-film formulations such as copper-zinc-tin and sulfide-selenide. Another initiative funds research and development into PV inks based on earth-abundant materials such as zinc, sulfur and copper.

“Several projects also seek to use iron pyrite - also known as fool’s gold - to develop prototype solar cells,” the DOE notes in the report. “Pyrite is non-toxic, inexpensive, and is the most abundant sulfide mineral in the Earth’s crust.”

Finally, improving recycling and reuse mechanisms can reduce demand for new materials, the DOE says, adding that these strategies also can help improve the sustainability of manufacturing processes.

Source: http://www.aer-online.com/e107_plugins/content/content.php?content.9408

Photo: Enbridge Inc.’s 5 MW Tilbury solar project in Ontario uses First Solar’s cadmium telluride thin-film modules. Photo credit: Enbridge

Supply Threats Persist For Thin-Film Solar Materials Due To Competition

One year ago, a report from the U.S. Department of Energy (DOE) on the global supply of essential PV module materials predicted possible disruptions for thin-film manufacturing.

The availability of indium, gallium and tellurium was examined in the context of current and future production needs, and the DOE found cause for concern. Indium and tellurium were pegged as especially vulnerable to supply tightness and price volatility, according to both the report and several market analysts at the time.

Now, the DOE has released the latest edition of its Critical Materials Strategy. Have the worries over thin-film PV materials supply eased? According to the DOE, the general supply-demand picture for indium, gallium and tellurium has “improved slightly,” but the situation is not entirely reassuring. The three metals are still highlighted (alongside neodymium and dysprosium) as clean-energy materials that face a “significant risk of supply chain bottlenecks in the next two decades.”

The report attributes the slight improvement primarily to decreased demand for the three thin-film materials: Although PV deployment is expected to grow, the requirements of the materials per module are expected to shrink.

For copper indium gallium diselenide (CIGS) modules, manufacturers are shifting to compositions with higher proportions of gallium and lower concentrations of indium, the DOE says. The result is a “partial trade-off in the potential for supply risk between the two elements.” At the same time, CIGS’ market share assumption has been reduced under the DOE’s new calculations, lowering projected demand for both indium and gallium.

Cadmium telluride (CdTe) thin-film modules currently account for approximately 10% of the PV market, according to the report. Declining silicon prices may threaten this slice of the market, but high tellurium costs and the increasing need for CdTe manufacturers to compete for supply with non-PV companies requiring tellurium continue to cause supply headaches.

“The cost of tellurium is a critical issue for CdTe solar cell makers, and the industry is working to lower material use and increasing recovery of new scrap to reduce reliance on primary tellurium,” the DOE says in the report.

Although short-term supply of tellurium appears adequate, future capacity increases may be insufficient to supply both CdTe manufacturing and the multitude of other manufacturing sectors that use tellurium. Under one scenario modeled in the report, tellurium supply would need to increase 50% more than its projected 2015 total in order to meet expected demand.

Indium and gallium have also experienced increased popularity in non-PV manufacturing uses, such as semiconductor applications, flat-panel displays, and coatings for smartphones and tablet computers. The DOE forecasts that as a result, supplies may run short by 2015 unless production of these materials is increased - or non-PV demand lessens.

Of the two metals, gallium poses more cause for concern, as the DOE has adjusted its assumptions of future gallium use under CIGS manufacturers’ expected manufacturing modifications.

“These higher estimates [of gallium requirements] are driven largely by the assumption that gallium will increasingly be substituted for indium in CIGS composition,” the DOE explains. This change points to the benefits of reducing material intensity in other aspects of PV manufacturing, such as reducing cell thickness and improving processing efficiency.

Overall, indium, gallium and tellurium all receive moderate scores (2 or 3 on a scale of 1 to 4) from the DOE with regard to both their importance to clean energy and short- and medium-term supply risk.

In order to help mitigate possible supply disruptions that could threaten the manufacturing and deployment of PV, as well as other types of clean energy, the agency has developed a three-pronged approach.

“First, diversified global supply chains are essential,” the DOE stresses in the report. “To manage supply risk, multiple sources of materials are required. This means taking steps to facilitate extraction, processing and manufacturing here in the United States, as well as encouraging other nations to expedite alternative supplies.”

The second strategy relies on developing alternatives to materials whose supply may be constrained. For PV, one DOE research program focuses on advancements in thin-film formulations such as copper-zinc-tin and sulfide-selenide. Another initiative funds research and development into PV inks based on earth-abundant materials such as zinc, sulfur and copper.

“Several projects also seek to use iron pyrite - also known as fool’s gold - to develop prototype solar cells,” the DOE notes in the report. “Pyrite is non-toxic, inexpensive, and is the most abundant sulfide mineral in the Earth’s crust.”

Finally, improving recycling and reuse mechanisms can reduce demand for new materials, the DOE says, adding that these strategies also can help improve the sustainability of manufacturing processes.

By: SI Staff
Source: http://www.aer-online.com/e107_plugins/content/content.php?content.9408

Photo: Enbridge Inc.’s 5 MW Tilbury solar project in Ontario uses First Solar’s cadmium telluride thin-film modules. Photo credit: Enbridge

DOE report finds 5 clean-energy related REEs at risk in short-term

The substantial capex required for the development of a rare earths mine, compounded by major miners’ lack of interest in mining rare earths, may spell trouble in meeting future demand.

A report issued Thursday by the U.S. Department of Energy has determined supplies of five rare earths metals-dysprosium, terbium, europium, neodymium and yttrium-are at risk in the short term, potentially impacting clean energy technology deployment in the years ahead.

The 2011 Critical Minerals Strategy examined 16 elements for criticality in wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting. Of those 16 elements, eight are rare earth metals valued for their unique magnetic, optical and catalytic properties.

Five rare earth elements used in magnets for wind turbines and electric vehicles or phosphors for energy-efficient lighting were found to be critical in the short term (present-2015).

Between the short term and the medium term (2015-2025), the importance to clean energy and supply risk shift for some materials.

Other elements-cerium, indium, lanthanum and tellurium-were found to be near-critical.

DOE’s strategy to address critical materials challenges rests on three pillars. To manage supply risk, multiple sources of materials are required. “This means taking steps to facilitate extraction, processing and manufacturing here in the United States, as well as encouraging other nations to expedite alternative supplies,” the report said. “In all cases, extraction, separation and processing should be done in an environmentally sound manner.

“Second, substitutes must be developed,” the report cautioned. “Research leading to material and technology substitutes will improve flexibility and help meet the materials needs of the clean energy economy.”

“Third, recycling, reuse and more efficient use could significantly lower world demand for newly extracted materials,” the DOE advised. “Research into recycling processes coupled with well-designed policies will help make recycling economically viable over time.”

The report also contains three in-depth technology analyses with the following conclusions:

· “Rare earth elements play an important role in petroleum refining, but the sector’s vulnerability to rare earth supply disruptions is limited.”

· “Manufacturers of wind power and electric vehicle technologies are pursuing strategies to respond to possible rare earth shortages. Permanent magnets containing neodymium and dysprosium are used in wind turbine generators and electric vehicle motors. Manufacturers of both technologies are current making decisions on future system design, trading off the performance benefits of neodymium and dysprosium against vulnerability to potential supply shortages.”

 · “As lighting energy efficiency standards are implemented globally, heavy rare earths used in lightning phosphors may be in short supply. In the United States, two sets of lighting energy efficiency standards coming into effect in 2012 will likely lead to an increase in demand for fluorescent lamps containing phosphors made with europium, terbium and yttrium.”

In their analysis, DOE found R&D plays a central role in developing substitutes for rare earth elements. In the past year, the agency has increased its investment in magnet, motor and generator substitutes.

“The demand for key materials has also been driven largely by government regulation and policy,” the report observed.

“Issues surrounding critical materials touch on the missions of many federal agencies,” said the DOE. Since March 2010, an interagency working group on critical materials and their supply chains convened by the White House Office of Science and Technology Policy has been examining market risks, critical materials in emerging high-growth industries and opportunities for long term-benefit through innovation.

The report also found that, in general, mining and metal processing expertise “has gradually declined in countries of the Organization for Economic Co-operation and Development, although the need to develop and retain such expertise has received increasing attention in recent years.”

While the number of REO-producing firms located outside of China is small, the proliferation of new rare earth companies “could help ease market concentrations in the years ahead,” the DOE observed. However, “one of the most significant requirements in the rare earth supply chain is the amount of capital needed to commence mining and refining operations…”

“The extraction and, in particular, the processing of rare earth ore is extremely capital intensive, ranging from $100 million to $1 billion of capital expenditure depending on the location and production capacity,” the report noted. “Bringing a greenfield mine to production likely costs in excess of $1 billion.”

“The estimated financial investment needed just to prove the resource (e.g., exploration and drilling) can be up to $50 million,” said the DOE. “The up-front cost of production capacity can range from $15,000 to $40,000 per tonne of annual capacity.’

“Unlike other commodities, rare earth mining generally does not appeal to the major global mining firms because it is a relatively small market (about $3 billion in 2010) and is often less predictable and less transparent than other commodity markets,” the report said.

“Additionally, the processing of rare earth elements into high-purity REOs is fundamentally a chemical process that is often highly specialized to meet the needs of particular customers,” the study noted. “It requires unique mineral processing know-how that is not transferrable to other mining operations. These factors reduce the appeal of rare earths production to the major mining companies, leaving the field mostly to junior miners.”

The report observed that smaller mining companies face a number of challenges, including being less well-capitalized than the majors and may find it difficult to raise money from traditional market. Certain macroeconomic conditions, particularly tight credit and volatile equity markets, can contribute to these difficulties.

“Successful public flotations require fairly advanced operations with proven resources, a bankable feasibility study and often customer contracts or off-take agreements in place that ensure some level of revenue,” the agency said. The DOE noted that Molycorp and Lynas Corporation have the largest capitalizations, “reflecting in part their expansion of large established mines.”

By: Dorothy Kosich
Source: http://www.mineweb.com/mineweb/view/mineweb/en/page72102?oid=142195&sn=Detail&pid=102055

Thermoelectrics: Roughing it

(Nanowerk News) Thermoelectric materials convert a temperature gradient into a voltage. Most thermoelectrics, however, are too inefficient for widespread practical application. Still, the possibility that these materials could usefully harness heat waste, such as that generated by combustion engines, makes improving their efficiency an important pursuit in materials science. A team of scientists led by Wooyoung Lee at Yonsei University in Korea has now shown that interface roughening may be an effective way to enhance the thermoelectric properties of core/shell nanowires (“Reduction of Lattice Thermal Conductivity in Single Bi-Te Core/Shell Nanowires with Rough Interface”).

In the ideal thermoelectric, the charge conducts easily from a hot point to a cold one, while heat conduction is low. The ratio between these quantities is contained in the thermoelectric ‘figure of merit’.

As both electrons and vibrational waves in the lattice, known as phonons, contribute to a material’s thermal conductivity, Lee and his colleagues attempted to raise a material’s thermoelectric figure of merit by suppressing the conductivity of phonons without impairing electrical conductivity. This can be achieved by adding defects or nanostructuring a material to make it smaller than the phonon mean-free path — the typical distance a phonon travels before it scatters.

Lee and his team combined both of these tricks to reduce the thermal conductivity of a promising thermoelectric material consisting of a bismuth nanowire core coated with a tellurium shell. The team synthesized the wires by cooling just-prepared bismuth nanowires with liquid nitrogen and then coating them with tellurium using a sputtering technique, giving a core/shell structure with a smooth interface. They also prepared the wires without the cooling step, resulting in a rough interface.

After examining a series of the core/shell nanowires of 160–460 nm in diameter in both the smooth and rough versions, the researchers noticed two trends: the narrowest wires had the lowest thermal conductivity, and wires with rough interfaces had lower thermal conductivity than those with smooth interfaces — in some cases by as much as a factor of five.

According to Lee, roughening of the interface between the bismuth and tellurium reduces the thermal conductivity of phonons more significantly than electron thermal conductivity (see image). “The overall effect is to increase the thermoelectric figure of merit,” says Lee.

Source: Tokyo Institute of Technology
http://www.nanowerk.com/news/newsid=23457.php 

New JRC report highlights risk of rare earth metal shortages

Rare Earth Elements

A new JRC report revealed that five metals, essential for manufacturing low-carbon technologies, show a high risk of shortage. Reasons for this lie in Europe’s dependency on imports, increasing global demand, supply concentration and geopolitical issues.

Scientists at the JRC’s Institute for Energy and Transport (IET) examined the use of raw materials, especially metals, in the six priority low-carbon energy technologies of the Commission’s SET-Plan: nuclear, solar, wind, bio-energy, carbon capture and storage and electricity grids.

The findings were that a large-scale deployment of solar energy technologies, for example, will require half the current world supply of tellurium and 25% of the supply of indium. At the same time, the envisaged deployment of wind energy technology in Europe will require large amounts of neodymium and dysprosium for permanent magnet generators.

The report considers possible strategies to avoid or mitigate shortage of these metals, for instance through recycling, increasing Europe’s own production of such metals and by developing of alternative technologies that rely on more common materials.

In the near future the JRC will conduct similar studies on other energy technologies that also use critical metals, such as electric vehicles, electricity storage, lighting and fuel cells.

By: Peggy Greb
Source: http://ec.europa.eu/dgs/jrc/index.cfm?id=1410&obj_id=14150&dt_code=NWS&lang=en

Rare Earth Elements are not the same as Rare Industrial Metals

Randy Hilarski has also released a video on this article that can be watched by clicking here.

I read articles from other writers who often refer to Rare Industrial or Technical Metals as Rare Earth elements. I would like to take some time and clear up the issue. I deal with RIM’s and REE´s on a daily basis. The two might both be considered metals but that is where the similarities end.

First we have REE´s or Rare Earth Elements. These metals consist of 17 metals, the Lanthanides plus Scandium and Yttrium on the periodic table of the elements. These metals are in a powder form, making them difficult to assay and store. One important factor that is often mentioned is that they are not rare. This is very true, but finding REE´s in large deposits is difficult.

In the mining sector REE mines are standalone mines, that focus on the mining and refining of REE´s exclusively. Currently around 97% of all REE´s are mined and refined in China. Historically REE mining and refining has been a dirty business, which has affected the environment around the mines. The elements Thorium and Uranium are often found along with the REE´s in the deposits causing the slurry to be slightly radioactive when processed. The use of highly toxic acids during the processing can also have serious environmental impact. Many companies are trying to open REE mines but they are meeting headwinds, as nations and people do not want these mines in their backyard.

Over the last few years China has dramatically cut its export of REE´s. This and the increased need for REE´s have caused a meteoric rise in the value of these metals. The one area that very few people talk about is the role of the media combined with speculators in raising the value of REE ETF´s in particular. For the last couple years REE´s were the rock stars of the metals. The news has calmed as of late, but the supply and demand factors that caused the metals to soar are still in place. Recently China closed it BaoTao mine until REE prices stabilize.

Rare Industrial Metals, RIM´s or Technical metals are another group entirely. The RIM´s are made up of metals used in over 80% of all products we use on a daily basis. Without these metals you would not have the world of the 21st century with our mobile phones, hybrid cars, flat screen TV´s, highly efficient solar energy and computers. Some of these metals include Indium, Tellurium, Gallium, Tantalum and Hafnium. These metals really are rare compared to the Rare Earth Metals which causes a great deal of confusion. These metals are in a metallic form, stable and easy to store and ship.

RIM´s are mined as a by-product of base or common metal mining. For example Tellurium is a by-product of Copper mining and Gallium is a by-product of Aluminum and Zinc mining. The mining of the RIM´s currently are for the most part at the mercy of the markets for the base or common metal mining. If the Copper mines of the world decide to cut production due to Copper losing value, this will have a huge impact on the amount of Tellurium that can be refined. Up until now, because of the previous small size of the RIM market, many companies do not feel the need to invest money into better technology to mine and refine these metals. The RIM´s would have to be valued much higher to gain the attention of the mining industry.

When China cut exports of REE´s they also cut exports of RIM´s. This put pressure on the value of these metals. RIM´s have increased in value, but nowhere near the meteoric rise of the REE´s. Most of the metals increased in value around 47% in 2010 and 25% so far in 2011. There is still a lot of room for growth in the value of these metals (not based on speculation like REE´s) as demand is exceeding supply now and in the future.

For Example, when REE´s and the stock market recently fell sharply the RIM´s came down slightly in value but have held their own extremely well. On a further note, according to Knut Andersen of Swiss Metal Assets, ¨Even though prices of the Rare Industrial Metals continue to go up in value, consumers will eventually only see a very small increase in the price of the end products, because there is so little of each metal used to produce these products. Also if the people can´t afford a smartphone they will still buy less expensive phones that still use the same Rare Industrial Metals¨.

The need for RIM´s has risen sharply over the years and will continue to grow at astronomical rates. China, India, South America and the whole of Africa with hundreds of millions of new consumers are now buying and using computers and mobile phones to name just a few products.

The future is bright for the technologies and the Rare Industrial Metals that make them work and for anyone who participates in stockpiling these metals now to meet future increased demand.

By: Randy Hilarski - The Rare Metals Guy

EU Feels Pressure of China’s Rare Earths Supply Pinch

The pressure to use low-carbon technologies less damaging to the environment is hitting hard on industries using rare earths in the European Union.

European Commission’s Vice President Antonio Tajani raised the concern regarding the steady supply of rare earths, which are primary components to solar panels and energy-efficient light bulbs.

Rare earth metals are also used in common electronic gadgets like iPhones and iPads.

The site www.theengineer.co.uk cited a report by Tajani’s early this week that a separate plan must be conceived to secure the supply of rare earths and allow the smooth execution of the EC’s Strategic Energy Technology Plan.

“European companies need to have a secure, affordable and undistorted access to raw materials. This is essential for industrial competitiveness, innovation and jobs in Europe,” Tajani’s report said.

The EC has been conducting a study of the rare earths metals in pursuing the low-carbon technology indicated in the plan, which includes nuclear, solar, wind, bio-energy, carbon capture and storage and updating electricity grids.

The study, “Critical Metals in Strategic Energy Technologies,” reveals that five metals commonly used in these technologies (neodymium, dysprosium, indium, tellurium and gallium) show a high risk of shortage, according to www.rareearthassociation.org.

China’s clamping down on rare earth production has led other nations to consider their options in securing their steady supply of the metals.

The United States has been considering building its own stockpile, which some industry specialists said could also distort world prices and the supplies.

China currently holds close to 95 percent of current supply and commanded a premium price raging from 100,000 to 300,000 renminbi early this month.

To be less reliant on China for rare earths, companies like Molycorp, Lynas Corp., Alkane Resources, Globe Metals Mining, among other mining firms have embarked on mineral exploration projects to uncover more of the coveted rare earths.

Recently, the U.S. Congress considered a strategic stock pile of rare earths as they are used in a variety of applications including global positioning and guidance and control systems, according to a Congressional Research Service report.

By Christine Gaylican
Source: http://au.ibtimes.com/articles/249401/20111115/eu-feels-pressure-rare-earths-supply-pinch.htm

JRC Report Reveals Five Rare Earth Metals Show High Scarcity Risk

The study titled ‘Critical Metals in Strategic Energy Technologies’ conducted by the Joint Research Centre (JRC) has revealed that five rare earth metals, which include gallium, tellurium, indium, dysprosium and neodymium, used in the production of low-carbon technologies are at risk of scarcity.

According to the study, the causes of scarcity of these metals are geopolitical problems, supply concentration, rising global demand and Europe’s reliance on imports. Moreover, these materials cannot be replaceable or recyclable easily. This study has been conducted subsequent to the publication of a European Commission report on essential raw materials at European Union in 2010.

The study suggests plans to eliminate scarcity so as to implement the Strategic Energy Technology (SET) Plan of the European Commission to gear up the development and implementation of low-carbon technologies. The study covers the utilization of raw materials, primarily metals, in the six major low-carbon technologies of the SET Plan such as electricity grids, carbon capture and storage, bio-energy, wind, solar and nuclear.

For instance, a large-scale solar power installation will need 25% of the current global supply of indium and 50% of the supply of tellurium, while a large wind power farm will need significant quantities of dysprosium and neodymium for its permanent magnet generators. China supplies almost all these metals to Europe.

The study recommends possible strategies to eliminate or reduce scarcity of these materials through replacing with other less essential materials, implementing alternative technologies and augmenting primary production of Europe by opening dormant or new mines and promoting reutilization and recycling. The JRC will conduct similar studies in the coming years on other energy technologies utilizing critical metals including fuel cells, lighting, electricity storage, and electric vehicles.

Source: http://www.jrc.ec.europa.eu

Rare metals supply a low-carbon question

BRUSSELS, Nov. 10 (UPI) — A world shortage of rare earth metals could hamper deployment of low-carbon energy technologies, a European Commission report says.

Many metals essential for manufacturing low-carbon technologies show a high risk of shortage, scientists at the Commission’s Joint Research Center said, because of Europe’s dependency on imports, increasing global demand, supply concentration and geopolitical issues.

The center analyzed the use of rare earth metals in the six priority low-carbon energy technologies in the Commission’s low carbon plans: nuclear, solar, wind, bio-energy, carbon capture and storage and electricity grids.

There is a risk of shortages of five metals commonly used in these technologies — neodymium, dysprosium, indium, tellurium and gallium — as virtually the whole European supply of a number of these metals comes from China, a center release said Thursday.

“European companies need to have a secure, affordable and undistorted access to raw materials,” Antonio Tajani, Commissioner for Industry and Entrepreneurship, said.

“This is essential for industrial competitiveness, innovation and jobs in Europe.”

Source: http://www.upi.com/

U.S. Preparing for the Coming Shortages in Metals and Minerals

Many if not most metals, rare earth minerals and other elements used to make everything from photovoltaic panels and cellphone displays to the permanent magnets in cutting edge new wind generators and motors will become limited in availability. Geologists are warning of shortages and bottlenecks of some metals due to an insatiable demand for consumer products.

 2010 saw China restrict the export of neodymium, which is used in wind generators and motors. The move was said to direct the supplies toward a massive wind generation project within China. What happened was a two-tiered price for neodymium formed, one inside China and another, higher price, for the rest of the world.

Dr. Gawen Jenkin, of the Department of Geology, University of Leicester, and the lead convenor of the Fermor Meeting of the Geological Society of London that met to discuss this issue is reported in the journal Nature Geoscience, highlighting the dangers in the inexorable surge in demand for metals.

Dr Jenkin said: “Mobile phones contain copper, nickel, silver and zinc, aluminum, gold, lead, manganese, palladium, platinum and tin. More than a billion people will buy a mobile in a year — so that’s quite a lot of metal. And then there’s the neodymium in your laptop, the iron in your car, the aluminum in that soft drinks can — the list goes on…”

Jenkin continues, “With ever-greater use of these metals, are we running out? That was one of the questions we addressed at our meeting. It is reassuring that there’s no immediate danger of ‘peak metal’ as there’s quite a lot in the ground, still — but there will be shortages and bottlenecks of some metals like indium due to increased demand. That means that exploration for metal commodities is now a key skill. It’s never been a better time to become an economic geologist, working with a mining company. It’s one of the better-kept secrets of employment in a recession-hit world.”

There’s a “can’t be missed” clue on education and employment prospects. “And a key factor in turning young people away from the large mining companies — their reputation for environmental unfriendliness — is being turned around as they make ever-greater efforts to integrate with local communities for their mutual benefit,” said Jenkin.

Among the basics that need to be grasped to understand the current state of affairs are how rare many metals, minerals and elements really are. Some are plentiful, but only found in rare places or are difficult to extract. Indium, for instance, is a byproduct of zinc mining and extraction.

Economics professor Roderick Eggert of the Colorado School of Mines explains at the U.S. Geological Survey meeting indium is not economically viable to extract unless zinc is being sought in the same ore. Others are just plain scarce, like rhenium and tellurium, which only exist in very small amounts in Earth’s crust.

There are two fundamental responses to this kind of situation: use less of these minerals or improve the extraction of them from other ores in other parts of the world. The improved extraction methods seem to be where most people are heading.

Kathleen Benedetto of the Subcommittee on Energy and Mineral Resources, Committee on Natural Resources, U.S. House of Representatives explains the Congress’ position for now by saying in a report abstract, “China’s efforts to restrict exports of mineral commodities garnered the attention of Congress and highlighted the need for the United States to assess the state of the Nation’s mineral policies and examine opportunities to produce rare earths and other strategic and critical minerals domestically. Nine bills have been introduced in the House and Senate to address supply disruptions of rare earths and other important mineral commodities.”

Another prominent session presenter Marcia McNutt, director of the U.S. Geological Survey adds in her report abstract, “Deposits of rare earth elements and other critical minerals occur throughout the Nation.” That information puts the current events in the larger historical perspective of mineral resource management, which has been the U.S. Geological Survey’s job for more than 130 years. McNutt points out something interested citizens should be aware of, “The definition of ‘a critical mineral or material’ is extremely time dependent, as advances in materials science yield new products and the adoption of new technologies result in shifts in both supply and demand.”

The geopolitical implications of critical minerals have started bringing together scientists, economists and policy makers. Monday Oct 10th saw the professors presenting their research alongside high-level representatives from the U.S. Congress and Senate, the Office of the President of the U.S., the U.S. Geological Survey, in a session at the meeting of the Geological Society of America in Minneapolis.

Those metals, rare earth minerals and elements are basic building materials for much of what makes energy efficiency, a growing economy, lots of employment and affordable technology possible. Its good to see some action, if it’s only talking for now. At least the people who should be keeping the system working are sensing the forthcoming problem.

Source: OilPrice.com

Tellurium, is there enough?

Tellurium (te-LOOR-i-em) is an element discovered by Franz Joseph Muller Von Reichenstein, a Romanian mining official in 1782. His work was forgotten until 1798 when a German Chemist Martin Heinrich Klaproth named the new element Tellurium and gave all credit for it discovery to Reichenstein.

Tellurium is element number 52 on the periodic table it is a semi-metallic, crystalline and brittle. It is usually found as a dark gray powder. Be wary when handling this element it can give a person a foul smell for a considerable amount of time.

The main supply source of tellurium is as a by-product of copper mining, approximately 90%. It is the rarest of all the by-product metals, with the exception of Gold. The amount of tellurium in the earth’s crust is about .005 ppm. There are estimates of 150-500 t annually produced. The amount produced is very difficult to verify. For example the USA, Australia, Belgium, China, Germany, Kazakhstan, Phillipines and Russia do not report how much they mine or recycle each year for national security reasons. According to the US National Renewable Energy Laboratory (NREL) the maximum possible annual production would be no more than 1,600 t per year. The global market for tellurium is miniscule compared to the copper market in turn this gives little incentive to the mining companies to invest in better, more efficient ways of extracting it.

The uses of tellurium include alloying component, semi-conductors, photo-diodes, solar cells, blasting caps, optical storage (CD-RW), computer memory (RAM), pyrotechnics, glass, ceramic paints and thermoelectric cooling devices. The largest use is as an alloying component to steel, aluminum, copper, tin and lead. It is used to improve the machinability of steel and copper.

The most exciting use of tellurium is in photovoltaic cells made from thin films of cadmium telluride. These solar panels are cheaper in cost per watt of electricity generating capacity than the traditional silicon panels. The firms making these solar panels will need approximately 80-100 t of tellurium per gigawatt of photovoltaic cell production. As stated earlier the annual production estimate is 150-500t. That means that the solar industry itself could use up most of the world’s production of tellurium in the coming years. There is serious debate as to whether the amount of global supply can meet the need of the solar industry.

For example in July 2009, India unveiled a US$19 billion plan to produce 20 GW of solar power by 2020. Under the plan, the use of solar-powered equipment and applications would be made compulsory in all government buildings, as well as hospitals and hotels. It has been said that this initiative alone will use up all the world’s production of solar cells.

In 2004 you could purchase tellurium for $10 per kg. Then the solar industry came along and disrupted the market. In August 2011 the price is hovering around $360 per kg. I find this to be an exciting moment in history. We are seeing commodity prices rise all around us. The population of the world is exploding. The Chinese are tightening their grips on their supplies of rare technical and rare earth metals.

There is a need for cleantech like never before and here we have an element in very tight supply. The next few years are going to be a very interesting time in the commodities market. I look forward to seeing where tellurium goes from here.

Source: www.buyrareearthmetalschinaprices.com
By: Randy Hilarski - The Rare Metals Guy

Rare earth elements vital to electronics industry

What do ics, lasers, optical fibres, capacitors, displays and headphones have in common? Answer: they are all electronic products that depend on one or more of the rare earth elements. And that list is far from complete.

 There are 17 rare earth elements, all vital to the electronics industry in some form. Yet, despite their name, some rare earth element

s are relatively plentiful: cerium is, apparently, as abundant as copper. They are regarded as ‘rare’ because deposits of these elements are generally not exploitable commercially.

Though typically used in relatively small quantities per product, a major worry has emerged recently about the guaranteed continuation of their supply – some 97% of rare earths are currently supplied by China.

Over the last few years, China has been reducing its exports of rare earths and recently cut back more drastically, by around 70%

. And an ominous note was sounded when China completely halted supplies to Japan after a row about Japan’s arrest of a Chinese boat captain. He was released and supplies resumed. Squabbles aside, the prediction is that, within a few years, China will need its entire output of rare earths to satisfy its own domestic demand.

So action is being taken to avoid the drastic scenario of the supply of rare earths simply coming to a halt (see below). If it did, it is astonishing how many electronic products we use every day would become either much more difficult – even impossible – to make or much more expensive.

Take one of the most widely used rare earths – neodymium. It was first used to generate the light in green laser pointers, but then it was found that, when mixed with iron and boron, neodymium makes magnets that are weight for weight 12 times stronger than conventional iron magnets. Result: neodymium magnets are used in in-ear headphones, microphones, loudspeakers and hard disk drives, as well as electric motors for hybrid cars and generators.

Where low mass is important, they are vital: for example, in laptops, they provide finer control in the motors that spin the hard disk and the arm that writes and reads data to and from it, allowing much more information to be stored in the same area.

In its Critical Materials Strategy, the US Department of Energy (DoE) estimates new uses of neodymium, in products like wind tu

rbines and electric cars, could make up 40% of demand in an already overstretched market, which is why any shortages would be critical.

Most of the rare earths vital to electronics are less well known: erbium is one example, a crucial ingredient in optical fibres. For long distance optical fibre transmission, amplification is vital and is achieved with the help of erbium. Embedded within short sections of the optical fibre, excitable ions of erbium are pushed into a high energy state by irradiating them with a laser. Light signals travelling down the fibre stimulate the erbium ions to release their stored energy as more light of precisely the correct wavelength, amplifying the signals.

Tellurium is an element that could see a huge increase in demand because in 2009, solar cells made from thin films of cadmium telluride became the first to outdo silicon panels in terms of the cost of generating a Watt of electricity. Until now, there has been little interest in tellurium, but if it leads to significantly cheaper solar power, demand will rocket and that is why the DoE anticipates potential shortages by 2025.

Hafnium is another rare earth proving itself vital to the semiconductor industry; hafnium oxide is a highly effective electrical ins

ulator. It outperforms the standard transistor material, silicon dioxide, in reducing leakage current, while switching 20% faster. It has been a major factor in enabling the industry to move to ever smaller process nodes.

Also central to semiconductors is tantalum, key to billions of capacitors used worldwide in products like smartphones and tablet computers. In its pure form, this metal forms one of two conducting plates on which charge is stored. As an oxide, it is an excellent insulator, preventing current leakage between the plates, and is also self healing, reforming to plug any current leakage.

One of the most widely used rare earths is indium, which we all spend a lot of time looking at. The alloy indium tin oxide (ITO) provides the rare combination of both electrical conductivity and optical transparency, which makes it perfect for flat screen displays and tvs,

where it forms the see through front electrode controlling each pixel. A layer of ITO on a smartphone’s screen gives it the touch sensitive conductivity to which we have been accustomed in the last few years. Mixed with other metals, indium becomes a light collector and can be used to create new kinds of solar cells, together with copper and selenium.

Another rare earth valuable for its magnetic properties is dysprosium. When mixed with terbium and iron, it creates the alloy Terfenol D, which changes shape in response to a magnetic field; a property known as magnetostriction. Dysprosium can also handle heat

; while magnets made from a pure neodymium-iron-boron alloy lose magnetisation at more than 300°C, adding a small amount of dysprosium solves the problem. This make the element invaluable in magnets used in devices such as turbines and hard disk drives.

Other rare earths include: technetium, used in medical imaging; lanthanum and, the main components of a ‘mischmetal’ (an alloy of rare earth elements) used to create the negative electrode in nickel metal hydride batteries – and cerium also helps to polish disk drives and monitor screens; yttrium, important in microwave communication, and yttrium iron garnets act as resonators in frequency meters; and europium and terbium.

The last have been used for decades to produce images in colour tvs, thanks to their phosphorescent properties – terbium for yellow-green and europium for blue and red. More recently, energy saving compact fluorescent light bulbs have used them to generate the same warm light as the incandescent tungsten bulbs they replaced.

Is there a single reason why the rare earths have proved so valuable for such a range of technologies? The answer is no – it is more a result of each element’s particular physical characteristics, notably the electron configuration of the atoms, according to one of the world’s leading experts, Karl Gschneidner, a senior metallurgist at the DoE’s Ames Laboratory.

“Some of the properties are quite similar; basically, their chemical properties. That is why they are difficult to separate from each other in their ores and that is why they are mixed together in the ores. But many of the physical properties vary quite a bit from one another, especially those which depend upon the 4f electron (a particular electron shell in the configuration of the atom), that is the magnetic, optical and electronic properties. Even some of the physical properties, which are not directly connected to the 4f electrons, vary considerably. For example the melting points vary from 798°C for cerium to 1663°C for lutetium.”

What makes the rare earths so special is the way they can react with other elements to get results that neither could achieve alone, especially in the areas of magnets and phosphors, as Robert Jaffe, a Professor of Physics at MIT, explains.

“The result is high field strength, high coercivity, light weight magnets, clearly valuable in tiny devices where magnetically stored information has to be moved around, like hard disk read/write operations. The magnetic properties of pure metals and relatively simple alloys have been thoroughly explored and there is nothing as good as rare earth magnets. Two paradigms for magnetic material are NeBFe (neodymium-boron-iron) and SmCo (samarium-cobalt), with the former most popular now.

“In phosphors, europium, terbium and others absorb high frequency light and then re emit the light in regions of the spectrum that are very useful in manipulation of colour, hence their use in flat panel displays and compact fluorescent lights.”

Another example is neodymium oxide, which can be added to crt glass to enhance picture brightness by absorbing yellow light waves. Neodymium has a strong absorption band centred at 580nm, which helps clarify the eye’s discrimination between reds and greens.

Given how vital they are for the electronics industry and other technologies – by one estimate, £3trillion worth of industries depend on them – it is remarkable that the world has been so complacent about sourcing rare earths, allowing a single country to virtually monopolise the supply. But that is now changing.

For example, the Mountain Pass mine in California is being reactivated by Molycorp Minerals in a $781million project, having been mothballed in 2002. Others include the Nolans and Mount Weld Projects in Australia, a site at Hoidas Lake in Canada, Lai Chau in Vietnam and others in Russia and Malaysia.

In Elk Creek, Nebraska, Canadian company Quantum Rare Earth Development is drilling to look for supplies and has called on President Obama to move aggressively to create a stockpile of rare earths.

Another associated problem is the lack of people with rare earth expertise, as Gschneidner says.

“There is a serious lack of technically trained personnel to bring the entire rare earth industry – from mining to OEMs – up to full speed in the next few years. Before the disruption of the US rare earth industry, about 25,000 people were employed in all aspects. Today, there are only about 1500.”

Despite these moves, it could be years before they enhance supplies significantly. For the longer term, there are prospects of better sources emerging. Just a couple of months ago, Japanese scientists from the University of Tokyo announced they had found the minerals in the floor of the Pacific Ocean in such high density that a single square kilometre of ocean floor could provide 20% of current annual world consumption. Two regions near Hawaii and Tahiti might contain as much as 100billion tonnes.

The team was led to the sea floor because they reasoned that many rock samples on land containing metallic elements were originally laid down as ocean sediments. “It seems natural to find rare earth element rich mud on the sea floor,” they said.

A final extraordinary fact about rare earths is that, despite their importance, we have hardly bothered to recycle them at all. In an age when metals like aluminium, copper, lead and tin have recycling rates of between 25% and 75%, it is estimated that only 1% of rare earths are recycled. Japan alone is estimated to have 300,000 tons of rare earths in unused electronic goods. If we do not correct that quickly, over the next few years at least, rare earths could live up to their name with a vengeance.

Author
David Boothroyd
Source: http://www.newelectronics.co.uk

Why Buy and Store Metals Offshore

Storage Facility in Zurcher Freilager AG free zone in Switzerland

One of the most common questions I hear in the metals business is, “€œwhere do I store my metals?”. This question is often posed by a person, foundation or trust that is looking to secure their investments. Usually we hear about buyers of gold, silver, platinum and palladium who want to protect their assets but now there is a growing number of clients who are looking to diversify beyond the core metals we all know so well. How do we best protect our assets today with all the uncertainty? Here I will discuss why a portion of your metals should be stored offshore, and in what form works best.

What kinds of Metals can an Entity Store Offshore?
The metals people most often store outside of the country are gold and silver although experienced metals buyers might also buy platinum and palladium. Recently clients have been able to buy other rare industrial metals like tellurium, cobalt, molybdenum, hafnium, indium and tantalum. A few years ago the average investor would not have had the ability to buy some of these metals unless they owned a company that produced items which needed these rare industrial metals.

Why is it Wise to Store Offshore?
In the 1930′s during the Great Depression the US government confiscated all privately held gold. US citizens were not able to possess their own gold again until the 1970′s. Will we have a similar situation this time around with the world in its current state of transition? How is the US government planning on fixing this situation? Many countries are choosing inflation, currency devaluation, low interest rates and austerity measures. When these techniques fail to rein in the problems will governments turn to gold and their populations’ assets? One thing I know is that indium, cobalt, tantalum, tungsten and many of the other rare industrial metals and rare earth metals are on the critical metals list of the USA, EU, Japan, Korea and China. The question is whether rare earth metals and rare industrial metals will ever be deemed so crucial to economic and industrial applications that a country may decide to control the purchase of these metals. We see what China is doing with these metals and one must ask ones’€™ self, “€œCould these control measures spread to my country?”€.

The old saying, “€œdon’€™t put all your eggs in one basket”€, applies here. Clients commonly say, “€œI want to be able to touch my metals”€. This is great, and encouraged but the stress of knowing so much of your assets are under one roof can be too much to handle for the average person. The metals can possibly become a liability and risk to you and your family’€™s safety.

Why would I not take delivery of Rare Industrial Metals and Rare Earths?
Some clients may wish to take delivery of their metals. This can be done just like gold and silver but the big difference is that these metals are used in industry. When the client takes the metals to the broker they will ask for the metals to be assayed. This is the process of taking a sample and sending it to a lab to verify purity. Also when dealing with rare industrial metals the amounts can be quite large and take up a good deal of space. Some elements like hafnium are controlled because of its use in nuclear technologies and it cannot be transported internationally. The metals trader stores the metals for the client and upon request resells the metals.

How do I Store the Metals Offshore?
When researching where to store your metals make sure to do thorough due diligence. There are many options for the investor. The most common choice is a safety deposit box in a bank. Safety deposit boxes are the most widely recognized. They are great for small allocations of metals. Storing in your second home offshore is also a common choice. This is also good for the client who has a small allocation of metals. Offshore bank vaults are also an option but can be rather expensive. The best option for clients with medium to large amounts of metals is an offshore private vault or depository. The prices are reasonable and they offer unparalleled privacy. A good example would be the Zurcher Freilager AG free zone in Switzerland.

What about Taxes?
This is a complicated issue that needs to be addressed by a tax professional. Every country has its own tax rules which are far beyond my expertise. As far as the Zurcher Freilager AG is concerned, as long as the assets are sold within the free zone it is a tax free event.

What are you doing about securing your future? Every day we hear more and more about an unstable financial market, geo political uncertainty, governments overreaching and bad economies. Wouldn’t it be prudent to have your assets spread out across the world?

What is holding you back?

By: Randy Hilarski - The Rare Metals Guy
Source: http://www.buyrareearthmetalschinaprices.com