Tungsten

Clash on Dodd-Frank ‘conflict minerals’

Faith leaders and business groups are colliding over a coming SEC ruling on little-known provisions of Dodd-Frank which require companies to track the use of “conflict minerals” in their production of certain consumer products.

One section of Dodd-Frank requires businesses to track - but not halt – the use of so-called conflict minerals from the Democratic Republic of the Congo, including a private sector audit of tracking methods. Another requires those involved in the commercial development of oil, natural gas, or minerals to disclose payments made to governments.

“It’s terrible what we’ve allowed to go on over the last few years without the world paying more attention to it,” said Rep. Jim McDermott (D-Wash.), on a conference call Wednesday with faith leaders. “As many as 7 million people have been killed… this is a mechanism by which we could cut off the flow of money to the rebels [in the Democratic Republic of the Congo]. The rebels are controlling the mines, and selling minerals on the black market.”

The SEC will soon make a decision on how to interpret the law, and certain business groups are suggesting that the sections would needlessly increase compliance costs.

“We’re concerned that industry pressure on the SEC will be so intense that they’ll water down the law and it’ll become ineffective,”said Corinna Gilfillan, the head of Global Witness, a human rights group.

Conflict minerals are found in all sorts of consumer products, and are widely used in electronics. The four main minerals mined in the Congo are tin, tantalum, tungsten and gold. Tin is used in circuit boards, tantalum in electronic capacitors, tungsten to allow mobile phones to vibrate, and gold as a coating for wires.

Heavyweights like the Chamber of Commerce, the American Petroleum Institute and the National Association of Manufacturers have expressed concerns about the provisions.

On the other end, religious figures have stepped up to join human rights groups in urging for a full enactment of the conflict mineral provisions.

“There is broad consensus in the religious community that transparency of minerals coming from conflict regions is a vital responsibility… we’re all concerned with trying to get conflict minerals out of the system,” said Rabbi David Saperstein, director of the Religious Action Center of Reform Judaism, on the conference call.

The faith leaders emphasized that their religions called them to treat other human beings with respect, which compelled them to support the Dodd-Frank provisions.

“What would it mean for us to be a neighbor to everybody in the supply chain used to make the clothes we wear, the computers we type on, and the cars that we drive? Our call to love is not defined by geographical proximity,” said Lisa Sharon Harper, director of mobilizing for the Christian group Sojourners. “We are all responsible for being good neighbors. It doesn’t matter if we have a good excuse… the people in the Congo are made in the image of God.”

“In the Jewish tradition, according to the Talmud, it was absolutely clear that there has to be transparency in the way that businesses went about selling their products. There were explicit prohibitions against deception, against watering down wine, against claiming something was something that it was not,” added Saperstein, also an appointee to the White House Council on Faith-Based and Neighborhood Partnerships.

By: Tim Mak
Source: http://www.politico.com/news/stories/0112/72002.html

Conflict-Free Minerals Reform In The Congo: What You Can Do

The Democratic Republic of the Congo: a region marked by violent conflict since 1996 in which torture, mass rape, forced displacement, and mass murder have been going on for years without much relief. It is a region in which armed groups are able to propagate the violence through the sale of the Congo’s mineral resources.

According to the Enough Project’s Raise Hope for Congo Campaign,

“Armed groups earn hundreds of millions of dollars per year by trading four main minerals: the ores that produce tin, tantalum, tungsten, and gold. This money enables the militias to purchase large numbers of weapons and continue their campaign of brutal violence against civilians, with some of the worst abuses occurring in mining areas.”

Most of these “conflict minerals” are used in the production of electronic devices in a process involving supply chains marked by a disturbing lack of transparency, so that by the time products such as cell phones or laptops end up in the hands of consumers, there is no way to know whether the purchase of those products contributed to the income of armed groups in the Congo.

The goals of many concerned activists are to find a way to ensure transparency in companies’ supply chains and to pressure companies found to be using conflict minerals to discontinue purchasing those minerals. The market for conflict minerals then, ideally, would be limited in terms of profit, reducing resources available to the armed groups, and thus pushing the armed groups toward peaceful resolution of the conflict which could open the region to other reforms.

There have been arguments that the initial attempts toward conflict-free policies have actually been detrimental to the Congo, by driving companies to search for minerals elsewhere, therefore crippling the economy and reducing the income of the general population. However, the UN Group of Experts recently issued a report stating that a conflict-free resolution proves to be an “important catalyst for traceability and certification initiatives and due diligence implementation in the minerals sector regionally and internationally,” and serves to reduce “the level of conflict financing provided by these minerals” in regions that have begun to comply to the due diligence guidelines. So, it seems that passing and implementing conflict-free resolutions are the first steps toward true reform and peace in the Congo.

Why not focus the fight for conflict-free reform on college campuses, which house a “particularly coveted demographic of electronics companies,” namely, students?

The Enough Project’s Raise Hope for Congo Campaign and STAND, a Student Anti-Genocide Coalition, have created the Conflict-Free Campus Initiative, a “nation-wide campaign to build the consumer voice for conflict-free electronics, such as cell phones, laptops, and other devices that will not finance war in eastern Congo.” By focusing on college campuses, the initiative “draws on the power of student leadership and activism to encourage university officials and stakeholders, both of whom are large purchasers of electronics and powerful spokespersons, to commit to measures that pressure electronics companies to take responsibility for the minerals in their supply chains.”

Organizing the student voice at the university level not only expresses the collective desire of individuals to ensure that they and their university do not participate in the perpetuation of the conflict in the Congo, but it also sends a powerful message to both political and corporate entities that consumers care about policies of those entities that may support the conflict. The Conflict-Free Campus Initiative explains:

“Universities are also a large client for most electronics companies and represent a large section of the buyers’ market for consumer electronics. By raising our collective voice as consumers, we can actually bring about a shift in corporate and government policy and help bring peace to Congo.”

Eight universities have issued conflict-free resolutions, including Stanford University, the University of Pennsylvania, and Duke University; more than sixty other colleges and universities throughout the United States and Canada have begun campaigns to do the same (including Yale University, Harvard University, Dartmouth College, Brown University, UC Davis, UCLA, UCSB, UCSC, Notre Dame, and Georgetown University).

The activism geared toward passing these conflict-free initiatives on college campuses has been successful in inspiring activity at the government level. California passed a bill prohibiting “state agencies from signing contracts with companies that fail to comply with federal regulations aimed at deterring business with armed groups in eastern Congo,” the first state bill to be passed regarding conflict minerals. Massachusetts is now also considering a conflict-free bill. Two cities, Pittsburgh, PA and St. Petersburg, FL, have also passed conflict-free resolutions.

If enough colleges, universities, towns, cities and states take the initiative in decisively acting to prevent the perpetuation of the conflict in the Congo by taking steps toward becoming conflict-free, perhaps the income of the armed groups committing mass rape and murder will be decreased sufficiently to prompt the beginnings of an end to the conflict.

Once the fighting ends, addressing the root causes of the conflict – including ethnic tensions – can be addressed through effective institutional reforms. But the fighting has to end before that can happen, and the fighting cannot end unless the actors in the conflict cannot afford to fight.

By: Cara Palmer
Source: http://www.neontommy.com/news/2012/01/conflict-free-minerals-congo-reform

Critical Metals Vital to Our Lives in Tight Supply

We begin 2012 similar to how we started 2011 when it comes to rare earth, rare technical metals and rare industrial metals. China has over 90% of production and refining. The US and EU governments are scrambling to legislate, source, produce, open and reopen mines. The West has decided to continue down the road of the idea that the markets will take care of the supply and price of these metals. What is alarming is how easily the West was lulled to sleep by China´s ability to supply the world its metals cheaply and efficiently. The West concentrated on making money trading stocks and futures that dealt with these commodities. China concentrated on building the most extensive mining industry in the history of man. Here in 2012 the Department of Energy in the USA has approved a spending bill that includes $20 Million to focus on the supply issues of these metals.

The metals I am speaking about are so vital to our everyday lives. These metals are found in your mobile phones, computers, LCD and LED TV´s, hybrid cars, solar power, wind power, nuclear power, efficient lighting and medical technologies. Here is a list of metals that have been deemed critical.

  • Indium RIM (Solar, Mobile Phones, LCD)
  • Tellurium RIM (Solar, Computers, Semi-conductors)
  • Gallium RIM (Solar, Mobile Phones, LED´s, Fuel Cells)
  • Hafnium RIM (Processors, Nuclear, Lighting, Plasma Cutting Tools)
  • Tantalum RIM (Capacitors, Medical Implants, Mobile Phones, Nuclear)
  • Tungsten RIM (Nuclear, Armaments, Aviation)
  • Yttrium REE (Lighting, Medical Technology, Magnets in Hybrids)
  • Neodymium REE (Magnets in Wind power, Super Magnets, Hybrid Vehicles)
  • Dysprosium REE (Computers, Nuclear, Hybrid Vehicles)
  • Europium REE (Lighting, LED´s, Lasers
  • Lanthanum REE (Hybrid Vehicles, Magnets, Optics)
  • Cerium REE (LED´s, Catalytic Converters, Magnets)

RIM=Rare Industrial Metal REE=Rare Earth Element

The supplies of these metals could hold back the production of green technologies. According to the latest report by the Department of Energy, ¨Supply challenges for five rare earth metals may affect clean energy technology deployment in the years ahead¨. If Green technology is to become main stream, the costs of these technologies have to reach cost parity with traditional energy sources. As long as there are serious supply issues with these metals the costs can´t reach these levels. The other option is finding alternatives like Graphene and Nanotechnologies.

The US and EU need supply chains of the metals that include both mining and refining of these metals. Relying on sovereign states for critical metals such as these, leave a nation vulnerable to outside influence in both politics and economics. Environmentalists have succeeded in influencing politicians to close mines throughout the West. Politicians have legislated the mining industry into the position it is in today. The Western nations must start now to build its supply chain or continue to be at the mercy of the BRIC (Brazil, Russia, India and China) nations for its metal needs.

The best the West can do now is provide, enough metals to meet its own demands. China has reached a point where it can now demand that certain industries produce their products there. If a company decides to try to produce the product in another country China will make producing that item cost prohibitive outside of China by raising the prices of the metals.

The demand for the products these metals are used to produce, are showing few signs of slowing down even in a so-called recession. Governments are subsidizing Green technology, people are buying mobile phones across the planet and everybody wants a nice flat screen TV. Will 2012 pass without countries truly taking this opportunity to fix the problem or will they step up and make the hard decisions which can put the countries back in control over their own destiny?

By: Randy Hilarski - The Rare Metals Guy

Endangered Elements: Tungsten Among China’s Potential Embargo List

It didn’t take long for the panic to set in, last year, when the Chinese government flexed its muscle by threatening the world’s Rare Earth Element (REE) supply. With 95% of REE supplies coming from China, that scare was indeed legitimate. But REEs aren’t the only elements with which China has the potential to choke off. On American Elements’ 2011 Top 5 US Endangered Elements List, three elements (tungsten, indium and neodymium) have over 50% of world supply coming from Chinese mines.

To refresh the memory of those who followed the rare earth surge from last year, and the subsequent piquing of interest in rare earth companies, it began with Japan. As the summer of 2010 was coming to a close, reports of an embargo of shipments to Japan for REEs raised concern for manufacturers who depend upon the elements for production primarily in the tech industry. Within a month, that embargo spread to North America and Europe, and concern over Chinese monopolization rose, along with REE prices, and those of the companies devoted to them. When the embargo ended, relief came to the sector, while the pace of development outside of China received only a minor increase. The threat of supply shortages still lingers, especially with tungsten, indium and neodymium.

The example of tungsten is not to be ignored, as 85% of global production comes from China, which has already indicated it might end all exports altogether due to domestic demand increases. With the highest melting point and greatest tensile strength of all elements, tungsten’s importance is unquestionable. Used in all situations that call for high temperature thresholds or hardness and strength, tungsten is imperative to many modern living standards that depend upon it. From a US perspective, the element’s use in the aerospace program, electronics and military (including in bullets and armor) is critical. To the mining industry as a whole, tungsten is a savior with many uses within the assembly of mining equipment itself, including drills in need of durability. Strangely enough, the United States dismantled domestic production of tungsten ore in 1994 with the last tungsten mine, the Pine Creek Mine in Inoyo, California, going down as a historical footnote en route to Chinese dependence.

Today, tungsten production remains primarily within China, but awareness of a need to develop outside of the PRC is becoming clearer. Options in the western hemisphere are appearing, and may soon be getting the attention they need to aid this drive for domestic independence. Juniors such as North American Tungsten [NTC - TSX.V] and Playfair Mining [PLY - TSX.V] may provide answers that mitigate a possible future supply breakdown. For North American Tungsten, the title of being the western world’s leader in tungsten production doesn’t come lightly. Through developing its Cantung Mine, it provides tungsten concentrate production within the borders of Canada’s Northwest Territories, which from an international standpoint is a much more secure mining investment environment to work within. At a much earlier stage, Playfair Mining is not yet a producer, but is heavily leveraged to the price of tungsten, which today sits around $440/MTU (“metric tonne unit”) or over $20/lb. With a goal in mind to partner with an end user of tungsten metal in order to finance its Grey River deposit into production, Playfair is well aware of the potential impact a tungsten shortage would carry.

Due to its high level of use in the manufacturing sector, a significant number of Fortune 500 companies are dependant upon tungsten’s availability. General Electric and its Tungsten Products Division, along with others like Kennametal and ATI Firth Sterling are among those that would most likely benefit from securing a long term tungsten supply, and are among potential targets should Playfair seek a high-worth partner to put its nearest term tungsten property into production. The company has 4 high-grade deposits with two located in the Yukon, one in the Northwest Territories and another on the southern coast of Newfoundland. Each of the properties was acquired strategically during a period of massively deflated tungsten prices, prior to this latest surge over the $440/MTU mark. This increase represents a 70% rise from the recent low prices that graced Playfair’s entry period. While the commodity’s price has risen, the company’s stock has yet to follow suit.

While the current price of the stock seems to have languished, the team is making strides to be better prepared for when the bigger end-users in need of tungsten come knocking. The board includes experienced individuals who have taken deals into production before, as well as Director James Robertson who took the last big tungsten company outside of China to successful acquisition. In both combined 43-101 compliant and non-compliant resource categories, Playfair’s tungsten properties contain more than an estimated 5.5 million MTUs of WO3. It’s to be expected, though, that since Playfair is an exploration company, these resources have room for expansion. As economic uncertainty lingers in all global markets, crucial and endangered elements such as REEs, tungsten, indium and neodymium will be within the watchful eye of western manufacturers in need of these ingredients for their operations. Whether another anticipated panic is inflicted by possible impending embargo actions by China doesn’t change the dependence we have on endangered elements. And like last year’s REE crisis, a price surge on those companies were set to move prior complications is entirely a likely scenario. G. Joel ChuryProspectingJournal.com

- Disclaimer: The author does not currently hold any shares of any of the companies mentioned in the article. However, some members of Cordova Media Inc., which owns the ProspectingJournal.com, may or may not have interests in one or more of the companies mentioned at the time of publication. Staff members from the Prospecting Journal reserve the right to acquire interests in any of the companies mentioned after 36 hours have elapsed upon initial publication of this article. Playfair Mining is a sponsor of ProspectingJournal.com.

Global Tungsten Shortage Looming

Tungsten is an essential component in many industrial applications including drilling & cutting tools, electronics and specialist steels. The European Union categorises tungsten as a “critical raw material”. China currently produces 85% of the world’s tungsten but their factories are ravenous consumers and China is a net importer. USA, Europe and Japan consume 55% of world tungsten, but produce only ~5%. It should be no surprise that tungsten prices have surged in the last year, while many other commodities have experienced price decline. Image Link: http://www.metalinvestmentnews.com/wp-content/uploads/2011/12/PLY1-Dec.jpg Tungsten is currently selling for $20 a pound. New growth markets include nickel-tungsten alloys which can substitute for gold-nickel plating.

Playfair’s tungsten properties contain an estimated 100 million pounds of 43-101 compliant tungsten, and significant additional historical resources. These resources have potential for expansion.

Tungsten is a low profile commodity. There is no tungsten ETF, and few pure plays. Outside of China only two publicly traded companies currently produce tungsten: Malaga (MLG-TSX) and North American Tungsten (NTC-TSX). With four high-grade Tungsten deposits, Playfair Mining (PLY-TSX) is highly leveraged to rising prices and looming tungsten shortages. Image Link: http://www.metalinvestmentnews.com/wp-content/uploads/2011/12/PLY2-Dec.jpg

“We feel very fortunate to have 4 high grade tungsten deposits at a time when the price of tungsten has started to move sharply higher,” states Don Moore, Playfair CEO, “We acquired these projects when tungsten prices were depressed. China has an ironclad grip on the market. It’s not surprising that we are starting to see some serious interest from large tungsten end-users who need to get stable supply from outside of China.” Image Link: http://www.metalinvestmentnews.com/wp-content/uploads/2011/12/PLY3-Dec.jpg Tungsten is an essential industrial product but typically insignificant on a cost basis. Like the salt in a bag of potato chips - the price of salt could triple and the bag of chips would only increase a penny. But you can’t sell chips without salt. So with China slurping up most of the global supply - tungsten could see dramatic price increases with little demand destruction. Playfair’s veteran team of Donald G. Moore, Neil Briggs is augmented by Director James Robertson who was a principal in Primary Metals, a tungsten producer taken out by Japanese giant, Sojitz Inc.Judging from public statements by Playfair’s management, the strategy may well be to partner with a tungsten end user to help finance the project into production.

Image Link: http://www.metalinvestmentnews.com/wp-content/uploads/2011/12/PLY4-Dec.jpg

In addition to the compliant resources at Grey River (16.2m lbs) and Risby (89.4m lbs), Playfair has historical resources of 18.5m lbs at Lened and 5.3m lbs at Clea. Four high grade Canadian deposits: Grey River representing near term production potential, Risby offering massive size potential and all offering room for exploration upside.

Grey River, located on the south coast of Newfoundland, consists of nine mineral claims covering 1,750 hectares. The Grey River tungsten veins are typical fluorite-rich wolframite-quartz greisen vein deposits. A 1984 GSC Economic Geology Report lists the Grey River deposits as “one of the largest typical wolframite deposits in Canada” and states “It would be remarkable if there were not many more tungsten occurrences’ [on the property].” The Grey River deposit sits at tidewater in an ice free, deep water Atlantic port that offers year round shipping.

Risby is an advanced stage deposit in the Yukon accessible by a 25 km tractor road from an all-weather highway. The property is located approximately 55 kilometres west of Ross River and is comprised of 38 quartz mineral claims, all 100% owned by Playfair Mining.

The property was worked on from 1968 to 1982 by the Caltor Syndicate and Hudson Bay Exploration and Development Co. Ltd. Together their exploration efforts include 48 diamond drill holes (7,057 metres), geological mapping, trenching, stream sediment sampling and ground geophysics (magnetometer and EM surveys). Recent work by Playfair includes diamond drilling, resource expansion and a NI 43-101 compliant inferred resource calculation of 8,537,000 tonnes of 0.475% WO3 at a 0.2% cut-off.

Despite surging tungsten prices, Playfair has been hit hard by tax loss selling is currently trading close to all-time lows at $.07. It has a market cap of $5.4 million. The British Geological Survey (BGS) has tungsten #4 on its “Risk List” stating that it is critically vulnerable to supply disruption. With 122 million fully diluted shares and 100 million pounds of 43-101 compliant tungsten on the books - worth about $2 billion at current prices - Playfair is definitely worth a closer look.

Source: Metal Investment News

Endangered Elements: Tungsten Among China’s Potential Embargo List

ANALYSIS – ProspectingJournal.com – It didn’t take long for the panic to set in, last year, when the Chinese government flexed its muscle by threatening the world’s Rare Earth Element (REE) supply. With 95% of REE supplies coming from China, that scare was indeed legitimate. But REEs aren’t the only elements with which China has the potential to choke off. On American Elements’ 2011 Top 5 US Endangered Elements List, three elements (tungsten, indium and neodymium) have over 50% of world supply coming from Chinese mines.

To refresh the memory of those who followed the rare earth surge from last year, and the subsequent piquing of interest in rare earth companies, it began with Japan. As the summer of 2010 was coming to a close, reports of an embargo of shipments to Japan for REEs raised concern for manufacturers who depend upon the elements for production primarily in the tech industry. Within a month, that embargo spread to North America and Europe, and concern over Chinese monopolization rose, along with REE prices, and those of the companies devoted to them.

When the embargo ended, relief came to the sector, while the pace of development outside of China received only a minor increase. The threat of supply shortages still lingers, especially with tungsten, indium and neodymium.

The example of tungsten is not to be ignored, as 85% of global production comes from China, which has already indicated it might end all exports altogether due to domestic demand increases.

With the highest melting point and greatest tensile strength of all elements, tungsten’s importance is unquestionable. Used in all situations that call for high temperature thresholds or hardness and strength, tungsten is imperative to many modern living standards that depend upon it. From a US perspective, the element’s use in the aerospace program, electronics and military (including in bullets and armor) is critical. To the mining industry as a whole, tungsten is a savior with many uses within the assembly of mining equipment itself, including drills in need of durability.

Strangely enough, the United States dismantled domestic production of tungsten ore in 1994 with the last tungsten mine, the Pine Creek Mine in Inoyo, California, going down as a historical footnote en route to Chinese dependence.

Today, tungsten production remains primarily within China, but awareness of a need to develop outside of the PRC is becoming clearer. Options in the western hemisphere are appearing, and may soon be getting the attention they need to aid this drive for domestic independence. Juniors such as North American Tungsten [NTC – TSX.V] and Playfair Mining [PLY – TSX.V] may provide answers that mitigate a possible future supply breakdown.

For North American Tungsten, the title of being the western world’s leader in tungsten production doesn’t come lightly. Through developing its Cantung Mine, it provides tungsten concentrate production within the borders of Canada’s Northwest Territories, which from an international standpoint is a much more secure mining investment environment to work within.

At a much earlier stage, Playfair Mining is not yet a producer, but is heavily leveraged to the price of tungsten, which today sits around $440/MTU (“metric tonne unit”) or over $20/lb. With a goal in mind to partner with an end user of tungsten metal in order to finance its Grey River deposit into production, Playfair is well aware of the potential impact a tungsten shortage would carry.

Due to its high level of use in the manufacturing sector, a significant number of Fortune 500 companies are dependant upon tungsten’s availability. General Electric and its Tungsten Products Division, along with others like Kennametal and ATI Firth Sterling are among those that would most likely benefit from securing a long term tungsten supply, and are among potential targets should Playfair seek a high-worth partner to put its nearest term tungsten property into production.

The company has 4 high-grade deposits with two located in the Yukon, one in the Northwest Territories and another on the southern coast of Newfoundland. Each of the properties was acquired strategically during a period of massively deflated tungsten prices, prior to this latest surge over the $440/MTU mark. This increase represents a 70% rise from the recent low prices that graced Playfair’s entry period. While the commodity’s price has risen, the company’s stock has yet to follow suit.

While the current price of the stock seems to have languished, the team is making strides to be better prepared for when the bigger end-users in need of tungsten come knocking. The board includes experienced individuals who have taken deals into production before, as well as Director James Robertson who took the last big tungsten company outside of China to successful acquisition.

In both combined 43-101 compliant and non-compliant resource categories, Playfair’s tungsten properties contain more than an estimated 5.5 million MTUs of WO3. It’s to be expected, though, that since Playfair is an exploration company, these resources have room for expansion.

As economic uncertainty lingers in all global markets, crucial and endangered elements such as REEs, tungsten, indium and neodymium will be within the watchful eye of western manufacturers in need of these ingredients for their operations. Whether another anticipated panic is inflicted by possible impending embargo actions by China doesn’t change the dependence we have on endangered elements. And like last year’s REE crisis, a price surge on those companies were set to move prior complications is entirely a likely scenario.

By: G. Joel Chury
Source: http://www.prospectingjournal.com/endangered-elements-tungsten-among-chinas-potential-embargo-list_12_21_2012/

Eumabois Toolgroup Expects Difficult Tungsten Market to Continue

FRANKFURT, GERMANY - Despite shrinking demand, the situation of tungsten prices and availability is still tense. Tungsten is the main constituent of hard metals, which are one of the key materials for the production of cutting edges for tools used in several operations and machining processes in the wood and furniture industry.

In October, the price of the most popular tungsten-based commercial product (ammonium paratungstate, APT) was around 450 dollars per metric ton (mtu). At mid 2010, such price was in the range of 250 dollars. The current cooling of global economy has granted a short rest to tools manufacturers, with stable prices for a few months now. “However, this positive signal should not reduce our level of attention to the difficult situation of raw material markets,” said Paul Oertli, president of Eumabois Toolgroup. “As a result of reduced export by Chinese suppliers, prices are still at critical levels despite a slight reduction of demand from many tools manufacturers,” Oertli added.

In October, the “British Geological Survey” placed tungsten at number one in the list of elements ranked by unreliability of supplies in 2011.

“In 2012, we expect a still difficult market scenario. Chinese suppliers dominating the sector will focus on tungsten as strategic metal also in the future. Other raw material sources will not help relieve tension in the short and medium term,” said Dr. Andreas Bock, president of Wolfram Bergbau und Hütten AG, Austria, one of the few European suppliers of tungsten and related carbides.

Source: http://www.woodworkingnetwork.com/news/woodworking-industry-trends-press-releases/Eumabois-Toolgroup-Expects-Difficult-Tungsten-Market-to-Continue-135490513.html?ref=513

Cracking Down on Conflict Minerals

Photo: Matt Moyer/Getty Images DIRTY JOB: Men and children work at a gold mine in Mongbwalu, Democratic Republic of the Congo, in 2005. The mine is controlled by one of the many warring militias in the area. Electronics firms could face bad publicity for using gold from such mines.

In the jungles and mountains of the Democratic Republic of the Congo, battles are raging, part of a 13-year-long civil war. Most of the world has paid little attention to the murder and rape that still dominates life in the DRC’s eastern provinces. But U.S. electronics companies like HP, Intel, and Apple recently became deeply interested, thanks to a provision on “conflict minerals” that was slipped into a 2010 financial reform law, the Dodd-Frank Act.

The minerals provision is intended to deprive the Congo’s warlords of funds by cutting off sales from the mines they ­control. It focuses on the ores that ­produce the “three Ts”: tin, ­tantalum, and tungsten, as well as gold. Public companies that use these ­metals in their products will be required to investigate their supply chains, determine if they use metals that were mined in the DRC, and disclose their findings to the U.S. Securities and Exchange Commission (SEC), in their annual reports, and on their websites. If its minerals did originate in the DRC, a company must submit a larger report on whether the purchase of these minerals financed or benefited armed groups in that part of Africa. The SEC is expected to issue final rules for implementing the law before the end of the year, and companies are scrambling to get ready.

While the conflict minerals law applies only to companies that are required to file annual reports in the United States, it’s expected to have an international impact. Since mineral suppliers sell to electronics companies around the world, any change in operations they make for the U.S. market will have ripple effects elsewhere.

The law doesn’t only affect the electronics industry. But the conflict mineral issue has been linked in the public mind to ­electronics because the three Ts play ­crucial roles in smartphones, TVs, and laptops. Tin is used in solder and thus found on every circuit board, tantalum is used in capacitors, and tungsten is used in the vibrating motors of many phones.

Electronics companies had been warned that they’d eventually have to account for their use of these minerals. So firms like HP and Intel asked the Electronic Industry Citizenship Coalition (EICC) and the Global e-Sustainability Initiative, two trade groups, to investigate the industry’s options.

The groups found that it’s extremely difficult to determine the origin of the tantalum used in a certain batch of smartphones. But they also realized that only about 45 smelters worldwide deal with the three Ts, buying the ores from suppliers and turning them into pure metals. After several years of research, the industry groups came up with the Conflict-Free Smelter Program, which is currently in the pilot phase for its first metal, tantalum.

The program asks each smelter to allow an annual independent audit of its mineral procurement process. If the auditors are convinced that no minerals are sourced from the Congo’s conflict mines, that smelter is certified as “conflict free,” allowing companies to buy its metals without worry. While the program is voluntary, EICC spokeswoman Wendy Dittmer says many smelting firms believe it’s in their interest to participate.

“Electronics companies are starting to ask questions all the way down their supply chains,” she says. “That certainly makes the buyers of the minerals very interested in being able to talk about their own due diligence.”

There are concerns that the law may backfire. By making the reporting requirements more onerous for companies that source minerals from the DRC, the law may reduce demand from all DRC mines, even those that aren’t in conflict regions and don’t finance armed groups.

These concerns about such a de facto ban led Motorola Solutions to initiate the Solutions for Hope Project, in which Motorola and several other companies formed a relationship with a conflict-free tantalum mine in the DRC’s Katanga province.

To establish the program, Michael Loch, Motorola’s director of supply-chain corporate responsibility, visited the mine and accompanied a shipment of ore along its export route. “This pilot allows our industry to stay engaged in the area,” says Loch. “We didn’t want to abandon the region.” But he acknowledges that it took a lot of effort to get the process in place for one mine and says it may be difficult to scale up the program.

The pilot programs should ­provide a framework to make ­compliance easier. Still, ­companies around the world are waiting for the SEC’s final rules with some anxiety. And there may be some efforts to block the rules’ enforcement through U.S. courts. The U.S. Chamber of Commerce, for one, has discussed the possibility of a lawsuit. The chamber disagrees with the SEC’s initial compliance cost estimate of US $71 million, saying that costs will instead be counted in the billions of dollars.

One thing is already certain about the SEC rules: There will be no fines for using conflict minerals. Even so, activists think it will have its intended effect, because companies will want to avoid bad publicity.

“For years we have been unknowing consumers of these minerals because companies have turned a blind eye,” says Sasha Lezhnev, a policy consultant on conflict minerals with the human rights group Enough. “This will enable consumers to make choices on whether or not to buy products from companies that are sourcing from these mines.”

By: ELIZA STRICKLAND
Source: http://spectrum.ieee.org/semiconductors/materials/cracking-down-on-conflict-minerals

What Are Technology Metals?

So, just what are “technology metals’? As a relatively new term, coined by Jack Lifton in 2007 and now widely used in the industry, there are probably a number of alternative definitions out there. Here at TMR, we say that the technology metals are those generally-rare metals that are essential for the production of ‘high tech’ devices and engineered systems, such as:

  • The mass production of miniaturized electronics and associated devices;
  • Advanced weapons systems and platforms for national defense;
  • The generation of electricity using ‘alternative’ sources such as solar panels and wind turbines;
  • The storage of electricity using cells and batteries.

There are of course numerous other uses and applications of these metals.

Almost all technology metals are byproducts of the production of base metals, with the exception of the rare earth metals, as a group, and lithium.

Prior to World War II, there were many metals for which there were no practical uses. They were literally laboratory curiosities available only in small quantities, obtained at high costs in both time and money.  For this reason, they were called the ‘minor metals’; they simply had no major uses in contrast to the base metals and even to the precious metals.  It didn’t matter how abundant a metal actually was in nature; if it had no practical uses it simply wouldn’t be produced. Nickel, for example, was a ‘minor metal’ before the commercial development of stainless steel in 1919, when economical methods of mass producing and using stainless steel were undertaken in earnest. Nickel after that rapidly became a high volume production metal.

In the first few years of the 20th Century, malleable tungsten was developed at General Electric and it rapidly displaced all other materials for use as filaments in incandescent light bulbs. Tungsten production increased, and shortly thereafter tungsten steels were developed and used, at first for military armor and armor piercing projectiles. Tungsten carbide for cutting tools soon after that revolutionized precision machining, just in time to make mass produced engines a reality. Tungsten, a minor metal in 1900, became by 1918 an important industrial metal, and had the designation ‘technology metal’ existed in 1918, tungsten would surely have been recognized as such at that point.

As an example of a more well-known metal transitioning from ‘minor’ to ‘major’ status, look at the late 19th Century  minor metal aluminum, which was used to cap the Washington Monument in 1886, as a symbol of America’s wealth. Aluminum was then more expensive than gold. Keep in mind that only a lunatic or a visionary would have predicted in 1886, that common people would cook with aluminum pots and pans less than a century later, and that even in 1919 the idea of nickel stainless steel kitchen appliances for the masses would have been considered fantasy nonsense.

World War II transformed a sleepy academic discipline, the study of the physical properties of all of the metals, into modern metallurgy with its emphasis on developing end uses for metals based not just on their properties as structural materials but even more important, on their newly categorized electrical, electronic, and magnetic properties for use in technology.

Fifty years ago, it was unclear which, if any of the then minor metals would be most useful for practical mass producible technologies.  We were then only just discovering and, actually, determining which of the electronic and magnetic properties of the chemical elements were important to our civilization’s needs and desires.  Prior to World War I, only the structural, decorative, simple electrical transmission and storage, and monetary metals were well known even to the metallurgists of the day. The last naturally occurring metal to be discovered was rhenium and that was only in 1924. What no one knew between the wars was that it would be important to know which, if any, of the little used minor metals could in fact be produced in significant volume at a significant yearly rate of production. There was no need for any such information, certainly not in academia, where most of these studies would be then undertaken. The equation was simple; no use equals no demand and therefore no attempt to supply in quantity.

World War II was the single most important driver for the transformation of the minor metals into the technology metals. Economics as a limitation to innovation was put aside and national security became the only driver for the development of the technologies for jet and rocket engines, radio and radar, electronic computing, and super weapons.

A glittering galaxy of physicists and innovative engineers, perhaps a once in a thousand years gathering of intellects, told the chemical engineers who specialized in metallurgy, which metals they critically needed in abundance and the world’s governments told all of them not to consider economics in their quest to produce them. The chemical engineers then began systematically to learn how to find, refine, and mass produce the formerly minor metals, now desperately needed for war technology. Among others this lead to the production for the first time, in every case, of large quantities of previously never-before-seen ultra pure silicon and germanium, as well as high purity gallium and indium, uranium and thorium, and mixed, and some individually separated,  rare earth metals and, just after the war, of lithium.

After the hot part of World War II ended, a 50 year long Cold War immediately ensued, during which the postwar uneconomic overproduction of minor metals for the new technologies continued, and the increasingly surplus production was diverted to high volume civilian consumer uses, spun off from technologies developed for the military on a cost plus basis. This was the seeding of our modern ‘Age of Technology.’ Its original economics were synthetic; the critical materials for modern technologies were being produced from operations and sources the development of which had been fully subsidized, in an unprecedented open-ended hand out by the war economy, both cold and hot.

So, at the same time, today, that we have become totally dependent on the technology metals for the mass production of necessary consumer goods such as miniaturized electronics, large scale television and cinema displays, electronic data processing, and personal communications,. i.e., our way of life, we are also critically dependent on technology metals for our national security in the form of secure communications, weapons guidance, surveillance, and battlefield superiority. The problem is that the bulk of the technology metals is now used for civilian production and the military instead of catalyzing the supply and taking a priority position, is now simply another customer.

In the table below we list those metals that we define as ‘rare’, by defining rare as ‘produced annually in a quantity of 25,000 metric tonnes or less.’ Only the most obscure of these rare metals, such as the rare earths holmium, ytterbium, and lutetium, can still be defined as minor metals, because even today they only have minor uses since they are and will remain too rare ever to be available in sufficient quantity for mass production of a technology.

Estimated global production of various metals in 2009
[technology metals are in red: rare metals are in bold]
Sources: US Geological Survey, British Geological Survey
Metal Production [tonnes]
Cobalt 62,000
Uranium 35,332
Lanthanum 32,860
Silver 21,332
Neodymium 19,096
Cadmium 18,000
Lithium 18,000
Yttrium 8,900
Bismuth 7,300
Praseodymium 6,150
Gold 2,350
Dysprosium 2,000
Selenium 1,500
Samarium 1,364
Zirconium 1,230
Gadolinium 744
Indium 600
Terbium 450
Europium 272
Palladium 195
Platinum 178
Germanium 140
Gallium 78
Rhenium 52
Rhodium 30
Hafnium 25
Tantalum 0
Erbium UNKNOWN
Holmium UNKNOWN
Lutetium UNKNOWN
Scandium UNKNOWN
Tellurium UNKNOWN
Thorium UNKNOWN
Thulium UNKNOWN
Ytterbium UNKNOWN

The technology metals are almost all rare metals, and they are almost all produced as byproducts of base or common metals.

The problem with the technology metals is that our supply of them, or more specifically our maximum rates of production of them, is critically dependent mostly upon our production of base metals. In the case of the rare earth metals, mined as a group, the key supply issue is the complex metallurgy of the separation of the individual rare earths from each other; for the case of lithium, a key issue is the length of time that primary concentration takes. The rare earths as a group are actually not rare, based on the admittedly arbitrary definition above, though individual rare earths certainly are.

The rare earths and lithium are today the subject of much discussion, because they have become the most visible technology metals.  The definition of a rare metal is somewhat fluid; a few of today’s rare metals may not always be so. Lithium, for example, is on the cusp of being struck from the list of rare metals, because of its use in electrical storage. But it has turned out that once a minor metal becomes a technology metal, it will never again be a minor metal.

Source: http://www.techmetalsresearch.com/what-are-technology-metals/

Chromium, are Nations Hoarding Natural Resources?

Chromium is a topic that you rarely hear about, but in today´s environment of uncertainty and the, ¨Great Worldwide Resource Grab¨, chromium gets more attention. Recently we have the EU and USA going into Libya (oil, lithium), Iraq (oil), Afghanistan (oil pipeline, rare earths), West Africa (cobalt, tungsten, oil, gold, timber and many more). Let us not forget China and the contracts that they are signing all over the world for their natural resource needs. This all makes for some very interesting times for nations and investors alike. Rare industrial metals are no different. Chromium has been in the news so it is time to explain its uses and background.

Chromium was discovered by Louis Vauqelin in 1797. Chromium is a blue-white metal with great corrosion resistance. It has the symbol Cr with an atomic number of 24. Chromium can be polished to form a very shiny surface and is used to plate other metals to form a protective layer.

The main use of chromium is in the production of steel where it is used as a hardener, corrosion resister and helps fight decolorization. Iron and chromium form Stainless Steel which is strong and has a high resistance to heat and decomposition. The two form one of the most versatile and durable metals known in the world. Stainless steel contains approximately 10% chromium. Chromium is also used in paints, coloring in glass, and as a plating agent.

According to the USGS the top producers are South Africa, Kazakhstan and India. South Africa produces almost 50% of all chrome ore. The three countries account for 80% of all chrome ore mined. Approximately 95% of all known reserves are located in Kazakhstan and the southern tip of Africa to include Zimbabwe and South Africa.

The background of chromium is interesting, but today we have a hot topic. India is thinking about a ban on exportation of chrome ore. This is after news out of South Africa that the, ¨National Union of Mineworkers¨, called for restrictions of chrome ore exports to China. It has been speculated that China has been stockpiling chrome ore in order to control future prices. Does this sound familiar? We currently have to deal with the manipulation of the rare earths and rare industrial metals by China. As of October 2011 India and South Africa have not followed through with the plans. The next few weeks and months will be quite interesting, we are seeing an increase in the need for chromium, with a possible decrease in available supply.

Today our world is full of uncertainty. Every day brings us news of something amazing. Governments are under pressure, people are suffering, companies are folding, wonderful inventions, worldwide internet connectivity, and resources are becoming scarce. I have learned that in times like this you can either complain or build a grand future. Many fortunes were made during the US Great Depression. We are living through a worldwide recession, when we come out on the other side natural resources will be needed like never before. Where are you putting your money and future?

By: Randy Hilarski - The Rare Metals Guy

How to Invest in Rare Earths

Exchange-traded funds are jumping on the bandwagon to invest in rare earths and other strategic metals, mainly by investing in companies that mine and use the materials. There are risks for ETF investors to weigh.

Oil, Gold…Rare Earths?
As ETFs focus on some less-known materials, there are risks to weigh

The raw-materials rally that has driven investors to load up on gold, crude and wheat is also sparking interest in funds tied to relatively obscure commodities such as lithium, uranium and rare earths.

Investors have poured hundreds of millions of dollars into a handful of exchange-traded funds linked to those materials over the past year or so. But betting on these kinds of industrial building blocks presents some unusual challenges and risks.

Trying to replicate the price swings in underlying materials through an ETF is challenging because there are typically no futures markets for these substances, as there are for more commonplace materials. Holding the physical goods is often impractical as well. As a result, many funds instead concentrate rare-earth and other exotic-metals plays on related stocks, which can rise or fall independently of the commodities.

The fortunes of some of these materials—and the companies that work with them—can change suddenly. After Japan’s nuclear disaster in March, two ETFs that hold uranium-related stocks plunged amid a clouded outlook for nuclear energy and haven’t recovered to date. In addition, uncertainty about the global economy has caused prices of some rare earths to fall by double-digits in percentage terms in recent months, according to market participants.

Investors who accept the risks are generally buying into a thesis that’s been applied to a broad range of commodities in recent years—that rapid economic growth in emerging markets is pushing up demand and suppliers are struggling to keep up. Indeed, some basic commodities have leaped in price, but some of the biggest increases are related to lesser-known materials.

While oil costs a little more than twice what it did at the low point in 2009, for instance, the price of neodymium—one of a group of rare-earth elements used in high-tech products and advanced weaponry—was recently up 23-fold over a similar period, according to American Elements, a Los Angeles manufacturer that uses rare earths.

A Step Removed

Van Eck Global last year launched Market Vectors Rare Earth/Strategic Metals. What qualifies as a “strategic” metal is “a little subjective,” says marketing director Edward Lopez. But instead of buying the metals, the fund buys shares in companies that get at least half their revenues—or have that potential—from rare earths or materials such as titanium and tungsten.

Despite their name, rare earths are common in the Earth’s crust. But about 90% of rare-earth supplies currently comes from China, which has started to limit exports, saying it needs the materials at home. Likewise, foreign investors face restrictions on holding shares of major Chinese rare-earth producers, Mr. Lopez says.

Mining companies in the U.S. and elsewhere are trying to ramp up production to replace lost supplies. Investing in such companies carries distinct risks, Mr. Lopez says, including the hurdles of moving from planning to production and the possibility that the market for the materials may shift in the meantime. But the Van Eck fund includes among its top holdings Molycorp Inc., in Greenwood Village, Colo., and Australia-based Lynas Corp., companies that are developing rare-earth mines in the U.S. and Australia, respectively.

Shares of the Van Eck fund are down 21% since it was launched last October, and down 36% this year through Sept. 30. The fund at the end of August had $346 million in assets, according to National Stock Exchange, a data provider and stock exchange.

Liking Lithium

Lithium is another metal that has attracted widespread interest, because of the vital role it plays in powering a proliferating array of consumer electronics, including cellphones and laptops. But, as with other such elements, it’s impractical to invest in lithium directly. It’s an often volatile material and insuring a large stock could “take so much away from the return that it wouldn’t be practical,” says Bruno del Ama, chief executive of Global X, an ETF provider.

The company’s Global X Lithium, launched in July 2010, invests in shares of companies that mine lithium and in makers of products that use lithium, such as lithium-ion batteries.

The fund’s largest single holding is Sociedad Quimica & Minera de Chile SA, a Chilean company that produces plant nutrients and iodine as well as lithium. Shares in the company made up 23% of the fund’s holdings as of Sept. 30.

The fund had $128 million in assets at the end of August, including inflows this year of $24 million, according to National Stock Exchange.

Mr. del Ama says buying stocks can give investors a boost because miners can make money even if prices for the material stay flat. “If on top of that, the price of the commodity goes up…you get a leveraged impact on the return,” he says.

Shares in the lithium fund have fallen 16.2% since the 2010 launch, and are down 41% this year through Sept. 30. Average lithium prices in 2011 through July were 2% below average prices last year, according to TRU Group Inc., a consultancy that specializes in lithium.

Uranium Plays

The recent fate of two uranium-linked funds—Global X Uranium and Market Vectors Uranium+Nuclear Energy—shows that the “leveraged play works both ways,” as Mr. del Ama puts it.

After the March 11 earthquake and tsunami in Japan crippled the Fukushima Daiichi nuclear plant, uranium prices plunged amid concern the incident would undercut support for nuclear power. In early September, weekly prices for the thinly traded fuel were 23% lower than they were on March 7, before the disaster, according to Ux Consulting Co. LLC.

But shares in Global X’s uranium fund, which focuses on uranium mining, have fallen even harder, losing more than half their value since March 10, the day before the Japanese disaster. The Market Vectors fund, which invests in both miners and other firms that work on nuclear energy, has fared somewhat better over that same period, falling 33% through Sept. 30.

By LIAM PLEVEN
Mr. Pleven is a reporter for The Wall Street Journal in New York. Email him at liam.pleven@wsj.com

National Defense and Tungsten

Recently we have heard a lot of news about the rare earth metals, and the supply issues these metals are having. There are a few highly critical rare industrial metals that are also having supply issues. China has a near monopoly with many of these metals. Currently China has up to a 95% monopoly on the mining and refining of many of the most important rare industrial metals also known as rare technical metals. The British Geological Survey has produced an interesting report called the Risk List 2011. Read over the list and see for yourself. The metals on this list and other lists like it are needed for over 80% of all worldwide industrial uses.

The rare industrial metal I would like to discuss today is tungsten. On the list it scored 8.5 out of 10. According to the USGS China mines 85% of all tungsten. Similar to rare earth elements China has decided to cut back on its exports of tungsten. The British Geological Survey ranks tungsten higher on its list, than it does rare earth metals. In 2010 recycled tungsten was a promising 37% of all metal used. When you have a tight supply chain and then the top producer cuts its exports, this causes huge ripples throughout the world’s economy. China is the largest producer and the largest user of tungsten. In order to protect its own supplies of tungsten, China has begun to invest in mining projects outside of its borders.

The national defense industry has grown to depend more on tungsten due to its extraordinary properties. Tungsten has the highest melting point of all metals, the highest tensile strength of all metals, and it is highly resistant to corrosion. Tungsten is one of the refractory metals, which means it has high resistance to heat and water. The other refractory metals include molybdenum, tantalum, niobium and rhenium. Here I am going to list some of the military applications of tungsten.

  1. Replacement for depleted uranium bullets
  2. Armor piercing bullets, anti-tank weapons, bunker busting systems
  3. Penetrators
  4. Shrapnel head
  5. Radiation protection (Submarines)
  6. Lubricants
  7. Armored vehicles
  8. Grenades
  9. Anti-vibration, counter and anti-flutter weights (Aviation)
  10. Superalloys for turbine blades, propellers, rotor blades and flight control surfaces.

According to the USGS the total tungsten mined in 2010 was approximately 61,000t. Total worldwide reserves are around 2,900,000t of which China has 2,000,000t. Canada, Kazakhstan, Russia and USA have significant tungsten resources. Many nations are attempting to invest in their mining industries. We have seen many news stories concerning countries like the USA, Canada, Japan, EU, Russia and Brazil investing large sums of money looking for new resources within their nations and abroad. There is much geo-political uncertainty throughout the world. Countries are seeing that they need to be independent or be at the mercy of other nations. This all means profits for rare industrial metal investors for the foreseeable future.

By Randy Hilarski - The Rare Metals Guy
www.buyrareearthmetalschinaprices.com

The Most At Risk Metals

Much has been made, maybe too much, of the dire straits the world will shortly be in when the Chinese finally choke off supplies of rare earth metals, or elements (REE) to the outside world. No one would deny REEs have many critical uses, but you can’€™t help wondering if there aren’t a lot of vested interests behind some of the clamor.

In the process, the supply side constraints on many other metals (with a few exceptions) are overlooked, until now, that is. The British Geological Survey has produced an intriguing report called the Risk List 2011. The analysis is, in their own words, intended to give a quick and simple indication of the relative risk to the supply of 52 chemical elements or element groups which we need to maintain our economy and lifestyle.

The list is much more than a simple list of rarity, REEs being a case in point; they are not rare, but the combination of relative abundance, location of deposits and concentration of production in certain countries makes them a much higher risk than metals that are rarer, but whose production is more widely distributed among politically reliable sources. Each element is given a score from 1.0 to 5.0 for each of the following criteria:

A score of 1 indicates a low risk, a score of 5 a high risk. The scores for each criterion are summed to give an overall risk to supply score, obviously the larger the score, the greater the risk.

Low-Risk Metals

The lowest scores are (from the bottom up):

  • Titanium 2.5
  • Aluminium 3.5
  • Chromium 3.5
  • Iron 3.5
  • Thorium 7.0
  • Bismuth 7.0
  • Rare Earth’s 8.0
  • Tungsten 8.5
  • PGM’s 8.5
  • Antimony 8.5

No major surprises there. Occurrence is plentiful and widely distributed, as is production. One may have expected to see titanium and chrome, both of which rely in part on supplies from Russia and South Africa, to have scored a little higher, but the report lists Australia and Canada as the leading producers for the first three and although China is listed as the leading producer for iron ore, they are also the leading consumer and a net importer.

Higher-Risk Metals

Unfortunately, not so at the other end of the list. China comes out as the leading producer of 27 of the elements listed and ranks as the leading producer in six of the top nine most at-risk elements, all of which are metals. The reason we chose nine instead of the top 10 is because items 10 and 11 are bromine and graphite respectively, but following these, the list promptly gets back into metals through the middle orders.

Extract from BGS Risk List 2011:

*PGM’€™s include the Platinum Group Metals: Ruthenium, Palladium, Osmium, Iridium and of course Platinum, but interestingly Rhodium is not mentioned. Source: British Geological Survey.

How often do we hear of supply risks to antimony, mercury or tungsten? Yet these metals are used in a bewildering array of applications. China produces nearly 90 percent of the world’€™s mined antimony and 85 percent of the world’€™s mined tungsten, according to the USGS. Arguably, tungsten is as critical as REEs, used as it is in a huge array of metal alloys for electrical, strength and wear resistant applications. Like REEs, China is restricting exports of tungsten and the BGS ranks the supply risks as even higher than REEs.

The purpose of the Risk List is not to cause alarm, but to alert policy makers and consumers to possible supply disruption in the future. As competition for resources grows, these metals currently present the highest risk due to geopolitics, resource nationalism (state control of production), strikes and natural disasters impacting a highly concentrated supply base. Metals buyers and product designers could do worse than spend a few minutes perusing this list and reflecting on their own raw material supply arrangements.

By Stuart Burns
September 15th, 2011
www.agmetalminer.com

Chinese indium export policies pushing price over $1000/kg

Indium is heading for prices of more than $1000/kg, according to industry analyst firm NanoMarkets in a new report “€˜Chinese Indium Strategies: Threats and Opportunities for Displays, Photovoltaics and Electronics”€™, which examines the impact on the electronics and related materials industries of recent Chinese policies to restrict the export of indium. Even higher prices have been suggested in the Chinese press — as much as $3000/kg.

China is the world’€™s largest supplier of indium by far, accounting for almost three-quarters of world reserves and about half of production. As such, its policies affect the markets for all indium-related electronic materials.

This activity has recently been formalized in a new Chinese five-year plan, which is designed to stimulate domestic Chinese high-tech industries. NanoMarkets claims that this move by the Chinese government will have significant negative implications for several classes of electronics products (in the areas of displays, lighting, photovoltaics, compound semiconductor chips, lead-free solders). The report therefore examines China’€™s evolving indium policy in both economic and political terms and explains how it will act as a catalyst for creating new growth opportunities in both the extraction industry and advanced electronic materials industries worldwide, looking especially at the impact on markets for novel transparent conductors and compound semiconductors.

In particular, high indium prices may force the conservative display industry to shift to ITO alternatives, especially those using nanomaterials, believes NanoMarkets.

Japanese indium users€”, who currently use 70% of China’€™s indium production,€” may find themselves without sufficient indium within a year. As a result, NanoMarkets expects firms in countries that have not been large suppliers of indium (including Australia, Canada, Laos and Peru) to rush into the market.

NanoMarkets also predicts that, for the first time, there will be significant amounts of indium extraction from sources other than zinc mines (e.g. sources such as tin and tungsten mining). The Chinese indium policy seems certain to incentivize new sources outside China to produce indium, either through primary extraction methods or through recycling/reclamation, the firm reckons.

Also, a sharp rise in the price of indium will harm the resurgent copper indium gallium (di)selenide (CIGS) photovoltaic (PV) industry, but in turn this will open the door for cadmium telluride (CdTe) and crystalline silicon (c-Si) PVs, which will become more price competitive, says NanoMarkets. In addition, new classes of absorber materials (zinc or tin) may emerge that are CIGS-like but don’€™t actually use indium.