LED Applications Growing, Will Only Lead to More REE Demand
An end product’s supply chain can be far reaching, with parts or all of the upstream and downstream producers sometimes getting hit at different times by economic forces.
This appears to be happening in China’s domestic LED market, which has seen a marked fall-off in demand, according to the China Strategic Monitor. That’s hit pricing during the second half of this year.
“Investment plans are being curtailed both in the upstream and downstream compared to those presented last year,” according to the report. “Despite this there are many companies still attracted to the market and many pharmaceutical companies and even wineries in South China are moving into LED lighting products. Based on this trend the industry is likely to realize large-scale production capacity over the next 2 or 3 years and pricing for products should fall a further 20-30%.”
Industry watchers reckon 10% of LED-driven businesses in China could go bankrupt this year. And one chief executive, speaking at the recent China Industrial Development Forum for the Low Carbon Economy, said 90% of all China’s LED businesses are running at a loss.
Interesting. The country’s Guangdong province said earlier this month that it had exported US$3.81 billion worth of lighting products between January and August – that’s a 21% increase over the same time period last year.
“Customs authorities indicated that the main export market is still Europe and America with the two taking up 63.2% of the total,” a report said. “Though exports to Hong Kong, Japan and other ASEAN countries are up 60% on last year.”
The massive rise in LED exports is ascribed to the increasing trend of upgrading to energy-efficient lighting combined with the higher production values and quality in China, according to the report.
Still, various companies producing LED products complain that the industry is hit with high selling, raw material and R&D costs. So, while a company reports a 32% jump in LED sales in the third quarter of 2011when compared to 2Q10, the senior executives also talk about the need to implement structural changes, improve execution, reduce overhead costs and initiate job cuts.
Now, the LED industry uses a wide range of phosphor materials to convert light emission from LED chips into a different wavelength. So, combining a blue LED with one or more phosphors can create a white LED. Many of the phosphors used in LEDs contain rare-earth elements, the most common one being the yttrium aluminum garnet, which is doped with cerium. Another phosphor, called TAG, contains terbium, while silicate and nitride phosphors are commonly doped with cerium or europium.
Here’s a small example of how LED products are being used: Kingsun Optoelectronic Co has just installed more than 10,000 street lights containing one million high-efficiency white LEDs along 75 miles of roads in Shenzhen. Kingsun anticipates a 60-percent reduction in energy consumption compared to the high-pressure sodium fixtures that have been replaced in the upgrade.
And while LEDs are now widely recognized as emerging light sources for general illumination, it turns out that LED lighting can also be used in a broad range of life-science applications such as skin-related therapies, blood irradiation, pain management, hypertension reduction and photodynamic therapy, which, when combined with drugs, is finding its way into cancer research.
In other words, the LED industry is only now just starting to be exploited, meaning demand will grow across all sectors. Translation – more rare earths will be needed in producing these products as research advances are made and commercial producers become more lean and efficient.
Source: http://www.raremetalblog.com/
By: Brian Truscott
Higher Prices for Numerous Rare Earth-Based Consumer Products
Consumers can expect significantly higher prices for a variety of consumer goods that use rare earth metals as at least one raw material, according to Michael Silver, president and chairman of the board of American Elements, a global manufacturer of engineered and advanced materials including rare earth metals and chemicals.
“The U.S. consumer has no idea the number of simple everyday products that will be impacted by the huge jump over the last year in rare earth prices,” says Silver. “Over the past two decades rare earths have become essential to the state of the art version of hundreds of household goods.”
According to Silver, computers, cell phones and other electronics will see manufacturing costs rise as neodymium is in computer hard drives, cerium is in the monitor screens and other rare earths play a part in the electronics. Products that rely on small electric motors often contain Neodymium magnets which have increased many fold in price.
Possibly the biggest impact will be felt in the cost of the family car.
“Rare Earths are ubiquitous in automobiles, he says. “Cerium is in the window glass to prevent yellowing and used as a glass polish in production. Yttrium is in spark plugs. Neodymium is in the electric motors that run everything from seat adjustments to windshield wipers. Lanthanum is in the batteries for electric and hybrid vehicles.”
He predicts higher prices will ripple through not just cars but all forms of transportation. The applications effecting automobiles will equally raise costs for other forms of transportation such as flight and rail.
Silver cites light bulbs as an example that consumers do not realize are affected by rare earth prices as Cerium is in bulb glass and Europium acts as the phosphor in fluorescent lights.
He predicts dental care costs will rise. Silver reports amalgam used to fill cavities is now based on a rare earth compound to get the new all white fillings to show up on an X-Ray the way the old metal fillings did.
Neodymium is used in modern welding goggles to remove glare. “Neodymium is a very magical material with many unrelated capabilities. When dispersed in glass, it prevents the wave length associated with yellow-green light from passing through, which is the wave length that causes eye damage,” Silver says.
Silver says the consumer will ultimately feel the pinch in cable television costs as well. Fiber optic cables run on EDFA technology which stands for ‘Erbium-Doped Fiber Amplification’, a technology reliant on the availability of Erbium which has skyrocketed in price. Existing infrastructures will not be impacted. New and replacement lines will.
American consumers may even be impacted at tax time. Silver says, “Our entire military equipment budget will increase due to higher rare earth costs and that will translate into higher government demand for revenue.” Rare earths are essential in the production of bullet proof vests (yttrium), night vision goggles (gadolinium) and F-35 and F-22 Fighter Jets, Bradley Armored Vehicle and AIM-9x Sidewinder missiles (neodymium).
American Elements is the world’s manufacturer of engineered & advanced materials with corporate offices and primary research & laboratory facilities in the United States and manufacturing & warehousing in the United States, China, Mexico and the United Kingdom.
September 27, 2011
(Source: PRNewswire)
By Rob Wynne
Thirteen Exotic Elements We can’t Live Without
From indium touchscreens to hafnium-equipped moonships, the nether regions of the periodic table underpin modern technology, but supplies are getting scarce
AS YOU flick the light switch in your study, an eerie europium glow illuminates your tablet computer, idling on the desk. You unlock it, casually sweeping your finger across its indium-laced touchscreen. Within seconds, pulses of information are pinging along the erbium-paved highways of the internet. Some music to accompany your surfing? No sooner thought than the Beach Boys are wafting through the neodymium magnets of your state-of-the-art headphones.
For many of us, such a scene is mundane reality. We rarely stop to think of the advances in materials that underlie our material advances. Yet almost all our personal gadgets and technological innovations have something in common: they rely on some extremely unfamiliar materials from the nether reaches of the periodic table. Even if you have never heard of the likes of hafnium, erbium or tantalum, chances are there is some not too far from where you are sitting.
You could soon be hearing much more about them, too. Demand for many of these unsung elements is soaring, so much so that it could soon outstrip supply. That’s partly down to our insatiable hunger for the latest gadgetry, but increasingly it is also being driven by the green-energy revolution. For every headphone or computer hard-drive that depends on the magnetic properties of neodymium or dysprosium, a wind turbine or motor for an electric car demands even more of the stuff. Similarly, the properties that make indium indispensable for every touchscreen make it a leading light in the next generation of solar cells.
All that means we are heading for a crunch. In its Critical Materials Strategy, published in December last year, the US Department of Energy (DoE) assessed 14 elements of specific importance to clean-energy technologies. It identified six at “critical” risk of supply disruption within the next five years: indium, and five “rare earth” elements, europium, neodymium, terbium, yttrium and dysprosium. It rates a further three - cerium, lanthanum and tellurium - as “near-critical”.
What’s the fuss?
It’s not that these elements aren’t there: by and large they make up a few parts per billion of Earth’s crust. “We just don’t know where they are,” says Murray Hitzman, an economic geologist at the Colorado School of Mines in Golden. Traditionally, these elements just haven’t been worth that much to us. Such supplies are often isolated as by-products during the mining of materials already used in vast quantities, such as aluminium, zinc and copper. Copper mining, for example, has given us more than enough tellurium, a key component of next-generation solar cells, to cover our present needs - and made it artificially cheap.
“People who are dealing with these new technologies look at the price of tellurium, say, and think, well, this isn’t so expensive so what’s the fuss?” says Robert Jaffe, a physicist at the Massachusetts Institute of Technology. He chaired a joint committee of the American Physical Society and the Materials Research Society on “Energy Critical Elements” that reported in February this year. The problem, as the report makes clear, is that the economics changes radically when demand for these materials outstrips what we can supply just by the by. “Then suddenly you have to think about mining these elements directly, as primary ores,” says Jaffe. That raises the cost dramatically - presuming we even know where to dig.
An element’s price isn’t the only problem. The rare earth group of elements, to which many of the most technologically critical belong, are generally found together in ores that also contain small amounts of radioactive elements such as thorium and uranium. In 1998, chemical processing of these ores was suspended at the only US mine for rare earth elements in Mountain Pass, California, due to environmental concerns associated with these radioactive contaminants. The mine is expected to reopen with improved safeguards later this year, but until then the world is dependent on China for nearly all its rare-earth supplies. Since 2005, China has been placing increasingly stringent limits on exports, citing demand from its own burgeoning manufacturing industries.
That means politicians hoping to wean the west off its ruinous oil dependence are in for a nasty surprise: new and greener technologies are hardly a recipe for self-sufficiency. “There is no country that has sufficient resources of all these minerals to close off trade with the rest of the world,” says Jaffe.
So what can we do? Finding more readily available materials that perform the same technological tricks is unlikely, says Karl Gschneidner, a metallurgist at the DoE’s Ames Laboratory in Iowa. Europium has been used to generate red light in televisions for almost 50 years, he says, while neodymium magnets have been around for 25. “People have been looking ever since day one to replace these things, and nobody’s done it yet.”
Others take heart from the success story of rhenium. This is probably the rarest naturally occurring element, with a concentration of just 0.7 parts per billion in Earth’s crust. Ten years ago, it was the critical ingredient in heat-resistant superalloys for gas-turbine engines in aircraft and industrial power generation. In 2006, the principal manufacturer General Electric spotted a crunch was looming and instigated both a recycling scheme to reclaim the element from old turbines, and a research programme that developed rhenium-reduced and rhenium-free superalloys.
No longer throwing these materials away is one obvious way of propping up supplies. “Tellurium ought to be regarded as more precious than gold - it is; it is rarer,” says Jaffe. Yet in many cases less than 1 per cent of these technologically critical materials ends up being recycled, according to the United Nations Environment Programme’s latest report on metal recycling, published in May.
Even if we were to dramatically improve this record, some basic geological research to find new sources of these elements is crucial - and needed fast. Technological concerns and necessary environmental and social safeguards mean it can take 15 years from the initial discovery of an ore deposit in the developed world to its commercial exploitation, says Hitzman.
Rhenium again shows how quickly the outlook can change. In 2009, miners at a copper mine in Cloncurry, Queensland, Australia, discovered a huge, high-grade rhenium seam geologically unlike anything seen before. “It could saturate the world rhenium market for a number of years - and it was found by accident,” says Hitzman.
In the end, we should thank China for its decision to restrict exports of rare earths, says Jaffe, as it has brought the issue of technologically critical elements to our attention a decade earlier than would otherwise have happened. Even so, weaning ourselves off these exotic substances will be an immense challenge - as our brief survey of some of these unsung yet indispensable elements shows.
Bibliography
US Department of Energy, Critical Materials Strategy
American Physical Society and Materials Research Society, Energy Critical Elements
US Geological Survey, Mineral Commodity Summaries
by James Mitchell Crow
Precious Metals: Is Tellurium the new Gold?
Gold has been spectacularly popular among investors for the past couple of years.
Silver seems to be this year’s gold.
So, what’s next year’s silver gonna be?
According to Robert Jaffe, a physicist at MIT, tellurium could be a metal investor’s best new play.
“Tellurium ought to be regarded as more precious than gold — it is; it is rarer,” he tells New Scientist magazine.
An article by James Mitchell Crow in the June, 2011 issue of New Scientist, titled “13 Exotic Elements We Can’t Live Without,” points out:
We rarely stop to think of the advances in materials that underlie our material advances. Yet almost all our personal gadgets and technological innovations have something in common: they rely on some extremely unfamiliar materials from the nether reaches of the periodic table. Even if you have never heard of the likes of hafnium, erbium or tantalum, chances are there is some not too far from where you are sitting.
You could soon be hearing much more about them, too. Demand for many of these unsung elements is soaring, so much so that it could soon outstrip supply. That’s partly down to our insatiable hunger for the latest gadgetry, but increasingly it is also being driven by the green-energy revolution. For every headphone or computer hard-drive that depends on the magnetic properties of neodymium or dysprosium, a wind turbine or motor for an electric car demands even more of the stuff. Similarly, the properties that make indium indispensable for every touchscreen make it a leading light in the next generation of solar cells.
All that means we are heading for a crunch. In its Critical Materials Strategy, published in December last year, the US Department of Energy (DoE) assessed 14 elements of specific importance to clean-energy technologies. It identified six at “critical” risk of supply disruption within the next five years: indium, and five “rare earth” elements, europium, neodymium, terbium, yttrium and dysprosium. It rates a further three - cerium, lanthanum and tellurium - as “near-critical”.
Here are the 13 elements necessary for cleantech applications that may be winners in this year’s commodities portfolio:
Neodymium
New Scientist says:
These numerous uses make for a perfect storm threatening future supplies. In its Critical Materials Strategy, which assesses elements crucial for future green-energy technologies, the US Department of Energy estimates that wind turbines and electric cars could make up 40 per cent of neodymium demand in an already overstretched market. Together with increasing demand for the element in personal electronic devices, that makes for a clear “critical” rating.
Erbium
New Scientist says:
Erbium is a crucial ingredient in the optical fibres used to transport light-encoded information around the world. These cables are remarkably good at keeping light bouncing along, easily outperforming a copper cable transporting an electrical signal. Even so, the light signal slowly fades as it racks up the kilometres, making amplification necessary.
Tellurium
New Scientist says:
In 2009, solar cells made from thin films of cadmium telluride became the first to undercut bulky silicon panels in cost per watt of electricity generating capacity.
Because the global market for the element has been minute compared with that for copper - some $100 million against over $100 billion - there has been little incentive to extract it. That will change as demand grows, but better extraction methods are expected to only double the supply, which will be nowhere near enough to cover the predicted demand if the new-style solar cells take off. The US DoE anticipates a supply shortfall by 2025.
Hafnium
Hafnium’s peerless heat resistance has taken it to the moon and back as part of the alloy used in the nozzle of rocket thrusters fitted to the Apollo lunar module. Since 2007, though, it has also been found much closer to home, in the minuscule transistors of powerful computer chips.
That’s because hafnium oxide is a highly effective electrical insulator. Compared with silicon dioxide, which is conventionally used to switch transistors on and off, it is much less likely to let unwanted currents seep through. It also switches 20 per cent faster, allowing more information to pass. This has enabled transistor size to shrink from 65 nanometres with silicon dioxide first to 45 nm and now to 32 nm.
By Justin Rohrlich June 20, 2011
US Rare Earth Public Policy Needs to Move From Studies to Actions
One of my favorite consulting slogans of all time “Analysis Paralysis” aptly captures the state of US public policy on rare earth metals and critical minerals (not to confuse the two). After our story last week on testimony presented to the House Committee on Natural Resources, urging the Committee to take action on a number of bills involving rare earth metals, we heard from Jeff Green, a well-known rare earth and specialty metals lobbyist. Green wanted to share some of his perceptions of current legislation and where he thinks US public policy needs to go to begin addressing some of the strategic supply constraints.
Rare Earth Stockpiling
“A lot of people are misperceiving what is being debated related to a stockpile”, Green said. “The only proposal on the table involves a new version of the RESTART Act (Rare Earths Supply Chain Technology and Resources Transformation (RESTART) Act of 2011) that calls for a 250-ton inventory of rare earth alloy and rare earth magnets.” The concept involves creating a small vendor-managed inventory that could be drawn down in a time of war. The “stockpile” would involve the government essentially buying up capacity from one of the US mining firms, as opposed to actually taking title and inventory. This approach, according to Green, provides critical domestic demand, a key component of re-starting US industry.
An Incremental Approach the RESTART Act
Another approach, one that Green favors, was offered by Rep. Mike Coffman (R-Co.) as an amendment to the Fiscal Year 2012 National Defense Authorization Act. It requires the DOD to create a Rare Earth Inventory Plan that would explore risk mitigation for those individual elements expected to be in short supply like neodymium and dysprosium.
This plan would be a follow-up to another congressionally mandated report, due to come out this summer, that essentially includes a supply and demand analysis by element for DOD. The Coffman amendment to the FY12 NDAA would require the Defense National Stockpile Center (now renamed Defense Logistics Agency Strategic Materials) to look at the elements in shorter supply and identify how the government plans on securing those elements and downstream value-added products such as metal, alloy and magnets. The amendment would only cover defense applications (not commercial), though the executive branch could take it further, should it so choose, according to Green.
Rather than try broad-brush solutions, Green suggests approving smaller incremental approaches that actually offer solutions. For example, he suggests passage of an initial bill that covers specific rare earth metals as opposed to all or other critical materials such as copper and cobalt that could quickly spin legislative action out of control.
Neodymium, Samarium, Dysprosium, Yttrium, Terbium: Good Places to Start
The “heavies”, as they are commonly referred to, present a different challenge as the US currently does not produce any of these elements.
Moreover, according to the U.S. Magnetic Materials Association (USMMA), the following defense applications remain dependent upon rare earth materials. In particular, precision-guided munitions (requiring samarium-cobalt or neodymium iron boron permanent magnets), neodymium iron boron magnets used in helicopter stealth technology, tanks and other vehicles use rare earth lasers for range finding, military communication satellites and yttria-stabilized zirconia used in “hot” sections of jet engines, according to the USMMA.
The USMMA supports legislation that “emphasizes production” to restart reliable domestic manufacturing for these key materials as well as defense-specific stockpiling for the most critical of the 17 rare earth elements via the Defense Logistics Agency.
At the end of the day, according to Green, US public policy should focus on only two initiatives:
- Define what we are short of
- Determine how we get it
It’s hard to argue with that. But with some estimates of the time needed to rebuild a rare-earth supply chain of 15 years, and a minimum of two years to create magnet facilities for sintered neodymium iron boron permanent magnets, Congress had better start acting soon.
June 7, 2011 By Lisa Reiman